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CHAPTER 1

Combinatorics

1.1. Counting Principle

• We need a way to help us count faster rather than counting by hand one by one.

Fact. (Basic Counting Principle) Suppose 2 experiments are to be performed.
If one experiement can result in m possibilities
Second experiment can result in n possibilities
Then together there are mn possibilities

• I like to use the box method. For example. Each box represent the number of possibilities in that
experiement.

• Example1: There are 20 teachers and 100 students in a school. How many ways can we pick a
teacher and student of the year?
� Solution: Use the box Method: 20× 100 = 2000.

• The counting principle can be generalized to any amount of experiments: n1 · · ·nr possibilities
• Example2:

� A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors, and 2 seniors.
� A subcomittee of 4 consists 1 person from each class. How many?
� Solution: Box method 3× 4× 5× 2 = 120.

• Example3: How many di�eren 6−place license plates are possible if the �rst 3 places are to be
occupied by letters and the �nals 3 by numbers?
� Solution: 26 · 26 · 26 · 10 · 10 · 10 =?
� Question: What if no repetition is allowed?
� Solution:26 · 25 · 24 · 10 · 9 · 8

• Example4: How many functions de�ned on n points are possible if each functional value is either
0 or 1.
� Solution: Box method on the 1, . . . , n points gives us 2n possible functions.
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1.2. Permutations

• How many di�erent ordered arrangements of the letters a, b, c are possible?
� abc, acb, bac, bca, cab Each arrangement is a permutation
� Can also use the box method to �gure this out: 3 · 2 · 1 = 6.

Fact. With n objects. There are

n (n− 1) · · · 3 · 2 · 1 = n!

di�erent permutations of the n objects.
(?) Note that ORDER matters when it comes to Permutations

• Example1: What is the numnber of possible batting order with 9 players?
� Answer: 9!(Box Method or permutations)

• Example2: How many ways can one arrange 4 math books, 3 chemistry books, 2 physics books,
and 1 biology book on a bookshelf so that all the math books are together, all the chemistry books
are together, and all the physics books are together.
� Answer: We can arrange the math books in 4! ways, the chemistry in 3! ways, the physics
in 2! ways, and B in 1! = 1 way.

� But we also have to decide which set of books go on the left, which next, and so on. That is
the same as the number of ways of arranging the letters M,C, P,B, and there are 4! ways of
doing that. MCPB, PBPB ect..

� So 4! (4!3!2!1!) ways.
• Example3: Repetitions: How many ways can one arrange the letters a, a, b, c?

� Let us label them A, a, b, c. There are 4!, or 24, ways to arrange these letters. But we have
repeats: we could have Aa or aA. So we have a repeat for each possibility (so divide!!!), and
so the answer should be 4!/2! = 12.

� If there were 3 a's, 4 b's, and 2c's, we would have

9!

3!4!2!
• Example4: How many di�erent letter arrangements can be formed from the word PEPPER?

� Answer: There 3 P 's 2 E's and one R. So 6!
3!2!1! = 30.

Fact. There are
n!

n1! · · ·nr!
di�erent permutations of n objects of which n1 are alike, n2 are alike, nr are alike.

• Example4: Suppose there are 4 Czech tennis players, 4 U.S. players, and 3 Russian players, in
how many ways could they be arranged?
� Answer: 11!

4!4!3! .
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1.3. Combinations

• We are often interested in selecting r objects from a total of n objects.
• How many ways can we choose 3 letters out of 5? (Does order matter here? NO)If the letters are
a, b, c, d, e then there would be 5 for the �rst position, 4 for the second, and 3 for the third, for a
total of 5× 4× 3. But order doesn't matter here. So we're over counting here....
� But suppose the letters selected were a, b, c. If order doesn't matter, we will have the letters
a, b, c 3! = 6 times, because there are 3! ways of arranging a group of 3. The same is true for
any choice of three letters. So we should have

5 · 4 · 3
3!

=
5!

3!2!
= 10.

Or what we did was 5 · 4, or n(n− 1) · · · (n− r + 1) then divided by the repeats 3!.

� This is often written

(
5
3

)
, read �5 choose 3�. More generally..

Fact. If r ≤ n, then (
n
r

)
=

n!

(n− r)!r!
and say n choose r, represents the number of possible combinations of objects taken r at a time.

(?) Order DOES NOT Matter here

• Recall in Permutations order did matter.
• Example1: How many ways can one choose a committee of 3 out of 10 people?

� Answer:

(
10
3

)
= 10!

3!7! = 10·9·8
3·2 = 10 · 3 · 4 = 120.

• Example2: Suppose there are 9 men and 8 women. How many ways can we choose a committee
that has 2 men and 3 women?

� Answer: We can choose 2 men in

(
9
2

)
ways and 3 women in

(
8
3

)
ways. The number of

committees is then the product

(
9
2

)
·
(

8
3

)
.

• Example3:A person has 8 friends, of whom 5 will be invited to a party. (We've all been through
this)
� (a) How many choices are there if 2 of the friends are feuding and will not attend together?

∗ Box it: [none] + [ one of them] [others]

∗
(

6
5

)
+

(
2
1

)
·
(

6
4

)
(recall that when we have OR, use +)

� (b) How many choices if 2 of the friends will only attend together?
∗ Box it: [none] + [with both]

∗
(

6
5

)
+ 1 · 1 ·

(
6
3

)
• The value of

(
n
r

)
are called binomials coe�cients because of their prominence in the binomial

theorem.

Theorem. (The Binomial Theorem)

(x+ y)
n

=

n∑
k=0

(
n
k

)
xkyn−k.
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Proof. To see this, the left hand side is (x + y)(x + y) · · · (x + y). This will be the sum of 2n terms,
and each term will have n factors. How many terms have k x's and n − k y's? This is the same as asking
in a sequence of n positions, how many ways can one choose k of them in which to put x's? (Box it) The

answer is

(
n
k

)
, so the coe�cient of xkyn−k should be

(
n
k

)
. �

• Example: Expand (x+ y)
3
.

� Solution: (x+ y)
3

= y3 + 3xy2 + 3x2y + x3.
• Problem: Using Combinatorics: Let's prove(

10
4

)
=

(
9
3

)
+

(
9
4

)
with no algebra:
� The LHS represents the number of committees having 4 people out of the 10.
� Let's say the President of the university will be in one of these committees and he's special,
so we want to know when he'll be there or not.

� When he's there, then there are 1 ·
(

9
3

)
is the number of ways that contain the President

while

(
9
4

)
is the number of comittees that do not contain the President and contain 4 out

of the remaining people.
• The more general equation is(

n
r

)
=

(
n− 1
r − 1

)
+

(
n− 1
r

)
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1.4. Multinomial Coe�cients

• Example: Suppose one has 9 people and one wants to divide them into one committee of 3, one
of 4, and a last of 2. How many di�erent ways are there?

� Solution: (Box it) There are

(
9
3

)
ways of choosing the �rst committee. Once that is done,

there are 6 people left and there are

(
6
4

)
ways of choosing the second committee. Once

that is done, the remainder must go in the third committee. So there is 1 one to choose that.
So the answer is

9!

3!6!

6!

4!2!
=

9!

3!4!2!
.

• In general: Divide n objects into one group of n1, one group of n2, . . . and a kth group of nk,
where n = n1 + · · ·+ nk, the answer is there are

n!

n1!n2! · · ·nk!
ways.

• These are known as multinomial coe�cients. We write them as(
n

n1, n2, . . . , nk

)
=

n!

n1!n2! · · ·nk!
.

• Example: Suppose we are to assign Police o�cers their duties . Out of 10 o�cers: 6 patrols, 2 in
station, 2 in schools.
� Answer: 10!

6!2!2! .
• Example: There are 10 �ags:5 indistinguishable Blue �ags, 3 indistinguishable Red �ags, and 2
indistinguishable Yellow �ags. How may di�erent ways can we order them on a �ag pole?
� Answer: 10!

5!3!2! .
• Example: Suppose one has 8 indistinguishable balls. How many ways can one put them in 3
boxes?
� Solution1: Let us make sequences of o's and |'s; any such sequence that has | at each side, 2
other |'s, and 8 o's represents a way of arranging balls into boxes. For example, if one has

| oo | ooo | ooo | .
� How many di�erent ways can we arrange this where we have start with | and end with |. In
between, we are only arranging 8 + 2 = 10 symbols, of which only 8 are o's

� So the question is: How many ways out of 10 spaces can one pick 8 of them into which to
put an o?

�

(
10
8

)
.

� Solution2: Look at spaces between. There are 9 spaces. So

(
9
2

)
+ 9.



CHAPTER 2

Axioms of Probability

2.1. Sample Space and Events

• We will have a sample space, denoted S (sometimes Ω, or U ) that consists of all possible outcomes
from an experiment.
� Example1:

∗ Experiment: Roll two dice,
∗ Sample Space: S = would be all possible pairs made up of the numbers one through six.
List it here.{(i, j) : i, j = 1, . . . 6}. 36 points.

� Example 2:
∗ Experiment: Toss a coin twice
∗ S = {HH,HT, TH, TT}}

� Example3:
∗ Experiment: Measuring the number of accidents of a random person before they had
turn 18.
· S = {0, 1, 2, . . . }

� Others:
∗ Let S be the possible orders in which 5 horses �nish in a horse race;
∗ Let S be the possible price of some stock at closing time today; or S = [0,∞) ;
∗ The age at which someone dies, S = [0,∞) .

• Events: An event A is a subset of S. In this case we use the notation A ⊂ S , to mean A is a
subset of S.
� A ∪B: points in S such that is in A OR B OR BOTH.
� A ∩B, points in A AND B. (you may also see AB)
� Ac is the compliment of A, the points NOT in A. (you may also see A′)
� Can extend to A1, . . . , An events.

⋃n
i=1Ai and

⋂n
i=1Ai.

10
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�
• Example1: Roll two dice.

� Example of an Events
� E =the two dies come up even and equal {(2, 2) , (4, 4) , (6, 6)}
� F = the sum of the two dice is 8. {(2, 6) , (3, 5) , (4, 4) , (5, 3) , (6, 2)}.
� E ∪ F = {(2, 2) , (2, 6) , (3, 5) , (4, 4) , (5, 3) , (6, 2) , (6, 6)}
� E ∩ F = {(4, 4)}.
� F c all the 31 other ways that does not include {(2, 6) , (3, 5) , (4, 4) , (5, 3) , (6, 2)}.

• Example2: S = [0,∞) age someone dies.
� Event A = person dies before they reached 30.

∗ A = [0, 30).
� Interpret Ac = [30,∞)

∗ The person dies after they turned 30.
� B = (15, 45). Do A ∪B,A ∩B and so on.

• Properties: Events also have commutative and associate and Distributive laws.
• What is A ∪Ac? = S.
• DeMorgan's Law:

� (A ∪B)
c

= Ac ∩Bc .Try to draw a picture
� (A ∩B)

c
= Ac ∪Bc.

� This works for general A1, . . . , An: (∪ni=1Ai)
c

= ∩ni=1A
c
i and (∩ni=1Ai)

c
= ∪ni=1A

c
i .

• The empty set ∅ = {} is the set that has nothing in it.
• A and B are disjoint if A ∩B = ∅.

� In Probability we may say that events A and B are �mututally exclusive� if they are disjoint.
� mutually exclusive means the same thing as disjoint
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2.2. Axioms of Probability

• Let E be an event. How do we de�ned the probability of an event?
� We can attempt to de�ne a probability by the relative frequency,
� Perform an experiment (e.g. Flipping a coin)
� Perform that experiment n times and let n(E) = the number of times the event occured in n
repetitions
∗ (e.g. Flip a coin n = 1000 times, and let's say that n ({Tails}) = 551 ) Then it's
reasonanble to think P ({Tails}) ≈ 551

1000

� So maybe we can de�ne the probability of an event as P (E) = limn→∞
n(E)
n . But we don't

know if this limit exists, or if n(E) is even well de�ned!!!
� So we need a new approach.

• Probability will be a rule given by the following Axioms (Laws that we all agree on)
� A probability will be a function P (E) where the input is a set/event such that
� Axiom 1: 0 ≤ P (E) ≤ 1 for all events E.
� Axiom 2: P (S) = 1.
� Axiom 3: (disjoint property) If the events E1, E2, . . . are pairwise disjoint/mutually exclusive
then

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei) .

∗ Mutually exclusive means that Ei ∩ Ej = ∅ when i 6= j.
• Remark: Note that you take a probability of a subset of S, not of points of S. However it is
common to write P (x) for P ({x}).
� Say if the experiment is tossing a xoin. Then S = {H,T}. The probability of heads should be
written as P ({H}), but it is common to see P (H).

• Example1:
� (a) Suppose we toss a coin and they are equally likely then S = {H,T} and

∗ P ({H}) = P ({T}) = 1
2 . We may write P (H) = P (T ) = 1

2 .
� (b) If biased coin is tosse then one could have a di�erent assignment of probability P (H) =

2
3 ,P (T ) = 1

3 .
• Example2:

� Rolling a fair die, the probability space consists of S = 1, 2, 3, 4, 5, 6, each point having prob-
ability 1

6 .
� We can compute the probability of rolling an even number by

P ({even}) = P ({2, 4, 6})

= P(2) + P (4) + P (6) =
1

2

where we used the rules of probability by breaking it down into a sum.

Proposition 1. (a) P (∅) = 0
(b) If A1, . . . , An are pairwise disjoint, P (∪ni=1Ai) =

∑n
i=1 P (Ai).

(c) P(Ec) = 1− P(E).
(d) If E ⊂ F, then P (E) ≤ P (F ).
(e) P (E ∪ F ) = P(E) + P (F )− P(E ∩ F ).

• It helps to draw diagrams to prove these.
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• Try to prove at least some of these yourself.

Proof. (a) Let Ai = ∅ for each i which are disjoint. So

P (∅) = P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai) =

∞∑
i=1

P (∅) ,

since this would be in�nite sum so that P (∅) = 0 since 0 ≤ P (∅) ≤ 1.
(b) Let An+1 = An+2 = · · · = ∅ so that ∪∞i=1Ai = ∪ni=1Ai hence

P (∪ni=1Ai) = P (∪∞i=1Ai)

=

n∑
i=1

P (Ai) +

∞∑
n=1

P (∅)

==

n∑
i=1

P (Ai) +

∞∑
n=1

0

=

n∑
i=1

P (Ai)

(c) Use S = E ∪ Ec. By Axiom (2) we have

1 = P (S) = P (E) + P (Ec) ,

hence P(Ec) = 1− P(E).
(d) If E ⊂ F, then write F = E ∪ (F ∩ Ec) thus since this is disjoint

P (F ) = P (E ∪ (F ∩ Ec)) = P (E) + P (F ∩ Ec) ≥ P (E) + 0 = P (E) .

(e) Write E ∪ F = E ∪ (Ec ∩ F ), (Picture of venn diagram of both )hence by disjointness again

P (E ∪ F ) = P (E) + P (Ec ∩ F ) .

Now write F (with picture) as F = (E ∩ F ) ∪ (Ec ∩ F ) and using disjointness

P (F ) = P (E ∩ F ) + P (Ec ∩ F ) =⇒ P (Ec ∩ F ) = P (F )− P (E ∩ F ) ,

substitute into �rst equation to get

P (E ∪ F ) = P (E) + P (Ec ∩ F )

= P (E) + P (F )− P (E ∩ F ) ,

as needed. �

• Example: Uconn Basketball is playing Kentucky this year.
� Home game has .5 chance of winning
� Away game has .4 chance of winning.
� .3 that uconn wins both games.
� What's the probability that Uconn loses both games?
� Answer.

∗ Let P (A1) = .5 , P (A2) = .4 and P (A1 ∩A2) = .3.
∗ We want to �nd P (Ac1 ∩Ac2). Simplify as much as we can:

P (Ac1 ∩Ac2) = P ((A1 ∪A2)
c
) by DeMorgan's Law

= 1− P (A1 ∪A2) , by Proposition 1c
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∗ Using Proposition 1e, we have

P (A1 ∪A2) = .5 + .4− .3 = .6,

Hence P (Ac1 ∩Ac2) = 1− .6 = .4 as needed.
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2.3. Equally Likely Outcomes

• In many experiments, a probability space consists of �nitely many points, all with equally likely
probabilities.
� Basic example was a tossing a coin P (H) = P (T ) = 1

2

� Fair die: P (i) = 1
6 for i = 1, . . . , 6.

• In this case from Axiom 3 we have that

P (E) =
number of outcomes in E

number of outcomes in S
.

• Example1: What is the probability that if we roll 2 dice, the sum is 7?
� Answer: There are 36 total outcomes , of which 6 have a sum of 7:

∗ E = ”sum is 7” = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. Since they are all equally
likely, the probability is P (E) = 6

6·6 = 1
6 .

• Example 2: If 3 balls are �randomly drawn� from a bowl containing 6 white and 5 black balls,
what is the probability that one ball is white and the other two are black?
� Method 1: (regard as a ordered selection)

P (E) =
WBB +BWB +BBW

11 · 10 · 9

=
6 · 5 · 4 + 5 · 6 · 4 + 5 · 4 · 6

990
=

120 + 120 + 120

990
=

4

11
.

� Method2: (Regard as unordered set of drawn balls)

P (E) =
(1 white) (2 black)(

11
3

) =

(
6
1

)(
5
2

)
(

11
3

) =
4

11
.

• We can always choose which way to regard our experiements.
• Example 3 A committee of 5 is to selected from a group of 6 men and 9 women. What is probability
consistsd of 3 men and 2 women

� Answer: Easy men·women
all =

 6
3

 9
2


 15

5

 = 240
1001 .

• Example 4: Seven balls are randomly withdrawn from an urn that contains 12 red, 16 blue, and
18 green.
� (b) Find probability that �at least 2 red balls are withdrawn;�
� Ans: Let E be this event then P (E) = 1−P (Ec), P (at least 2 red) = 1−P (drawing 0 or 1 balls).
Now

P (drawing 0 or 1 red balls) =

(
16 + 18 = 34

7

)
(

46
7

) +

(
12
1

)(
34
6

)
(

46
7

) .

• Explanation of Poker/Playing cards : Ranks and suits,etc!
� There are 52 cards in a standard deck of playing cards. The poker hand is consists of �ve
cards. There are 4 suits: heats, spades, diamonds, and clubs (♥♠♦♣). The suits diamonds
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and hearts are red while clubs and spades are black. In each suit there are 13 ranks: the
numbers 2, 3 . . . , 10, the face cards, Jack, Queen, King, and the Ace(not a face card).

• Example 5: What is the probability that in a poker hand (5 cards out of 52) we get exactly 4 of
a kind?

� Answer: Consider 4 aces and 1 king: AAAK =

(
4
4

)(
4
1

)
. But JJJJ3 is the same

probability.
∗ Thus there are 13 ways to pick the �rst rank, and 12 ways to pick the second rank

P (4 of a kind) =
[choice of ranks] [given rank how to choose a hand](

52
5

)

=

(
13 · 12 ·

(
4
4

)(
4
1

))
(

52
5

) ≈ .0000139

• Example 6: What is the probability that in a poker hand (5 cards out of 52) we get a straight.
(no straight �ushes, can't be of the same suit)
� Answer: Consider: A-2-3-4-5-6-7-8-9-10-J-Q-K-A- There are 10 possible straights.

∗ Given a straight Say A2345: There are 4 · 4 · 4 · 4 · 4− (of the same suit) = 45 − 4.

P (Straight) =
[choice of straight] [given striaght how to choose a hand](

52
5

)
=

10 ·
(
45 − 4

)(
52
5

) ≈ .0039

• Example 7: What is the probability that in a poker hand (5 cards out of 52) we get a Full House.
(3 and a 2 of a kind)
� Answer: It would be [3 of a kind][2 of a kind]. AAAKK or KKAAA are di�erent!Choose suit:

13 · 12.
� Then once we choose within each group there

P (Full House) =
[choice of rank] [3 of a kind] [2 of a kind](

52
5

)

=

13 · 12

(
4
3

)(
4
2

)
(

52
5

) ≈ .0014.

• Example 8: (Birthday Problem) In a class of 32 people, what is the probability that at least two
people have the same birthdays? (We assume each day is equally likely.)
� Answer: Let the �rst person have a birthday on some day. The probability that the second
person has a di�erent birthday will be 364

365 . The probability that the third person has a
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di�erent birthday from the �rst two people is 363
365 . So the answer is

P (at least 2 people) = 1− P (Everyone di�erent birthday)

= 1− 365

365
· 364

365
· 363

365
· · · (365− 31)

365

= 1− 1 · 364

365
· 363

365
· · · 334

365
≈ 0.752374.

� Really High!!!



CHAPTER 3

Independence

3.1. Independent Events

Definition. We say E and F are independent events if

P (E ∩ F ) = P (E)P (F ) .

• Example1: Suppose you �ip two coins.
� The event that you get heads on the second coin is independent of the event that you get tails
on the �rst.

� This is why: Let At be the event of getting is tails for the �rst coin and Bh is the event
of getting heads for the second coin, and we assume we have fair coins (although this is not
necessary), then

P (At ∩Bh) =
1

4
, list out all outcomes

P (At)P (Bh) =
1

2

1

2
=

1

4
.

• Example2: Experiment: Draw a card from an ordinary deck of cards
� Let A = draw ace, S= draw a spade.

∗ These are independent events since you're taking one at a time, so one doesn't e�ect the
other. To see this using the de�nition we have compute

∗ P (A)P (S) = 1
13

1
4 .

∗ White P (A ∩ S) = 1
52 since there is only 1 Ace of spades.

Proposition 2. If E and F are independent, then E and F c are independent.

Proof. Draw a Venn Diagram to help with the computation, but note that

P (E ∩ F c) = P (E)− P (E ∩ F )

= P (E)− P (E)P (F )

= P (E) (1− P (F ))

= P (E)P (F c) .

�

• Remark: Independence and mutually exclusive, are two di�erent things!

Definition. We say E,F,G are independent if E,F are independent, E,G are independent, F,G are
independent, and P (E ∩ F ∩G) = P (E)P (F )P (G).

• Example: Experiment is you roll two dice:
� De�ne the following events:

18
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� S7 = {sum is 7}
� A4 = {�rst die is a 4}
� B3 = {second die is a 3}
� Are the events S7, A4, B3 independent?

∗ Compute

P (S7 ∩A4 ∩B3) = P ({(4, 3)}) =
1

36

but

P (S7)P (A4)P (B3) =
6

36

1

6

1

6
=

1

36 · 6
.

• Remark: This generalizes to events A1, . . . , An. We say events A1, . . . , An are independent if for

all subcollections i1, . . . , ir ∈ {1, . . . , n} we have that P
(⋂r

j=1Aij

)
=
∏r
j=1 P

(
Aij
)
.

• Example:
� An urn contains 10 balls: 4 red and 6 blue.
� A second urn contains 16 red balls and an unknown number of blue balls.
� A single ball is drawn from each urn. The probability that both balls are the same color is
0.44.

� Question: Calculate the number of blue balls in the second urn.
� Solution: Let Ri = even that a red ball is drawn from urn i and let Bi =event that a blue
ball is drawn from urn i.
∗ Let x be the number of blue balls in urn 2,
∗ Note that drawing from urn 1 and independent from drawing from urn 2. They are
completely di�erent urns! They shouldn't e�ect the other.
∗ Then

.44 = P
(

(R1 ∩R2)
⋃

(B1 ∩B2)
)

= P (R1 ∩R2) + P (B1 ∩B2)

= P (R1)P (R2) + P (B1)P (B2) , by independence

=
4

10

16

x+ 16
+

6

10

x

x+ 16
.

∗ Solve for x! You will get x = 4.
• Example (Gambler's Ruin)(Used in Finance or Actuarial Science)

� Experiment: Suppose you toss a fair coin repeatedly and independently. If it comes up heads,
you win a dollar, and if it comes up tails, you lose a dollar. Suppose you start with $50.
What's the probability you will get to $200 before you go broke?

� Answer: It's actuallly easier if we generalize the problem.
∗ Let p(x) be the probability you get 200 before 0 if you start with x dollars.
∗ We know p(0) = 0 and p(200) = 1. So by the law of total probability

p(x) = P (Win 200 before 0)

= P (H)P (Win 200 before 0 | H) + P (Hc)P (Win 200 before 0 | Hc)

=
1

2
p (x+ 1) +

1

2
p (x− 1) .
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∗ Rearrange the function to get

2p(x) = p (x− 1) + p (x+ 1) ⇐⇒ p(x) + p(x) = p (x− 1) + p (x+ 1)

⇐⇒ p(x)− p (x− 1) = p (x+ 1)− p(x)

⇐⇒ p(x)− p (x− 1)

x− (x− 1)
=
p (x+ 1)− p(x)

(x+ 1)− x
.

∗ This tellls you that the slows are constant. What does that tell you about p(x)? It's a
line!
· Thus we must have p(x) = x

200 .

∗ Thus p(50) = 1
4 .

• Example (A variation of Gambler's ruin)
� Problem: Suppose we are in the same situation, but you are allowed to go arbitrarily far in
debt. Let p(x)be the probability you ever get to $200. What is a formula for p(x)?
∗ Answer: Just as before p(x) = 1

2p(x+ 1) + 1
2p(x− 1). So that p(x) is linear.

∗ But now all we have is that p(200) = 1 and linear and domain is (−∞, 200).
∗ Draw a graph: Now the slope, or p′(x) can't be negative, or else we would have it that
p(x) > 1 for x ∈ (−∞, 200).
· The slope can't be positive or else we would get p(x) < 0 for x ∈ (−∞, 200).

∗ Thus we must have that p(x) ≡ constant. Hence p(x) = 1 for all x ∈ (−∞.200).
∗ Sol: So we are certain to get $200 if we cna get into debt.

� Method2:
∗ Just compute There is nothing special about the �gure 200. Another way of seeing this
is to compute as above the probability of getting to 200 before −M and then letting
M →∞.
· We would get p(x) is a line with p(−M) = 0 and p(200) = 1 so that

p(x)− 0 =
1− 0

200− (−M)
(x− (−M))

and letting M →∞ wee see that p(x) = x+M
200+M → 1.

• Example: Experiment: Roll 10 dice.
� What is the probability that exactly 4 twos will show if you roll 10 dice?
� Answer: These are independent. The probability that the 1st, 2nd, 3rd, and 10th dice will

show a three and the other 6 will not is
(

1
6

)3 ( 5
6

)7
.

� Independence is used here: the probability is 1
6

1
6

1
6

5
6

5
6

5
6

5
6

5
6

5
6

1
6 . Note that the probability

that the 10th, 9th, 8th, and 7th dice will show a two and the other 6 will not has the same
probability.

� So to answer our original question, we take
(

1
6

)4 ( 5
6

)6
and multiply it by the number of ways

of choosing 4 dice out of 10 to be the ones showing the twos. There are

(
10
3

)
ways to do

this

(
10
4

)(
1
6

)4 ( 5
6

)6
.

• This is an example of Bernoulli trials, or the Binomial distribution.
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� If we have n independent trials, where the probability of success if p. The probability that
there are k successes in n trials is(

n
k

)
pk (1− p)n−k .



CHAPTER 4

Conditional Probability and Independence

4.1. Conditional Probabilities

• Suppose there are
� 200 men, of which 100 are smokers,
� 100 women, of which 20 are smokers.
� Question1: What is the probability that a person chosen at random will be a smoker? 120

300
� Question2: Now, let us ask, what is the probability that a person chosen at random is a smoker
given that the person is a women? 20

100 right?
∗ Note this is

# (women smokers)

# (women)
=
P (women and a smoker)

P (woman)
.

• Thus we make the following de�nition:

Definition. If P (F ) > 0, we de�ne

P (E | F ) =
P (E ∩ F )

P (F )
.

Now P (E | F ) is read �the probability of E given F .�

• Note that P (E ∩ F ) = P (E | F )P (F )!
• This is the conditional probability that E occurs given that F has already occured!
• Remark: Suppose P (E | F ) = P(E) , i.e. knowing F doesn't help predict E. Then this implies

that E and F are independent of each other. Rearranging P (E | F ) = P(E∩F )
P(F ) = P (E) we see that

P (E ∩ F ) = P(E)P(F ).
• Example1: Experiment: Roll two dice.

� (a) What is the probability the sum is 8?
∗ Solution: Note that A = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} so we know P (A) = 5

36 .
� (b) What is the probability that the sum is 8 given that the �rst die shows a 3? (In other
words, �nd P (A | B))
∗ Solution: Let B = {�rst die shows three}.
∗ P (A ∩B) = P ({(3, 5)}) = 1

36 is probability that the �rst die shows a 3 and the sum is
8

∗ Finally we can compute

P (A | B) = P (sum is 8 | 1st is a 3) =
1/36

1/6
=

1

6
.

• Remark: When computing P (E | F ), Sometime its easier to work with the reduced sample space
F ⊂ S.

22
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� Note in the previous example when we computed

P (sum is 8 | 1st is a 3)

we could have worked in the smaller sample space of {1st is a 3} = {(3, 1) , (3, 2) , (3, 3) , (3, 4) , (3, 5) , (3, 6)}.
Since only (3, 5) begins with a 3 and has the sum of 8, then the probability is

total number of outcomes in the event

total number of outcomes in new sample space
=

1

6
.

• Example2: Experiment: Suppose a box has 3 red marbles and 2 black ones. We select 2 marbles.
� Question: What is the probability that second marble is red given that the �rst one is red?

∗ Answer:
· R1 = {First marble is is red },
· R2 = {Second marble is red}, then

P (R2 | R1) =
P (R1 ∩R2)

P (R1)

=

(2 red) (0 black) /

(
5
2

)
3/5

=

(
3
2

)(
2
0

)
/

(
5
2

)
3/5

=
3/10

3/5
=

1

2
.

∗ Solution 2:
· We could have done the same example more easiely if we look at the new sample
space S′ = {R,R,B,B} thus P (R2 | R1) = P′ ({drawing red}) = 2

4 = 1
2 .

• Example3: Landon is 80% sure he forgot his textbook at the Union or Monteith buildings. 40%
sure that it is at the union, and 40% sure that it is at Monteith. Given that Landon already went
to Monteith and noticed his textbook not there, what is the probability that it's at the Union?
� Solution:

P (Union | Not Monteith) =
P (U ∩M c)

P (M c)

=
P (U)

1− P (M)
, since U ⊂M c

=
4/10

6/10
=

2

3
.

• Example4: Suppose that Annabelle and Bobby each draw 13 cards from a standard deck of 52.
Given that Sarah has exactly two aces, what is the probability that Bobby has exactly one ace?
� Solution: Let A be the event �Annabelle has two aces," and let B be the event �Bobby has
exactly one ace." Again, we want P (B | A), so we calculate P(A) and P(A ∩ B). Annabelle

could have any of

(
52
13

)
possible hands. Of these hands,

(
4
2

)
·
(

48
11

)
will have exactly
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two aces, so

P (A) =

(
4
2

)
·
(

48
11

)
(

52
13

) .

Now the number of ways in which Annabelle can have a certain hand and Bobby can have a

certain hand is

(
52
13

)
·
(

39
13

)
, and the number of ways in which A and B can both occur

is

(
4
2

)
·
(

48
11

)
·
(

2
1

)
·
(

37
12

)
. so

P(A ∩B) =

(
4
2

)
·
(

48
11

)
·
(

2
1

)
·
(

37
12

)
(

52
13

)
·
(

39
13

) .

Therefore,

P (B | A) =
P (A ∩B)

P(A)
=

 4
2

·
 48

11

·
 2

1

·
 37

12


 52

13

·
 39

13


 4

2

·
 48

11


 52

13



=

(
2
1

)
·
(

37
12

)
(

39
13

) .

• Note that since P (B | A) = P(A∩B)
P(A) then P (A ∩B) = P(A)P (B | A).

� In general: If E1, . . . , En are events then

P (E1 ∩ E2 ∩ · · · ∩ En) = P (E1)P (E2 | E1)P (E3 | E1 ∩ E2) · · ·P (En | E1 ∩ E2 ∩ · · · ∩ En−1) .

• Example5:
� Experiment: Suppose an urn has 5 White balls and 7 Black balls. Each ball that is selected is
returned to the urn along with an additional ball of the same color. Suppose draw 3 balls.

� Part (a): What is the probability that you get 3 white balls.
∗ Then

P (3 white balls) = P (1st W)P (2nd W | 1st W)P (3nd W | 1st & 2ndW)

=
5

12

6

13

7

14
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� Part (b): What is the probability of getting 1 white ball.

P (1 white ball) = P (WBB) + P (BWB) + P (BBW )

= 3
5 · 7 · 8

12 · 13 · 14
.

• Note that
P (E ∩ F ) = P (E | F )P (F )

• Example 6: Phan wants to take a Biology course or a Chemistry course. Given that the students
take Biology, the probability that they get an A is is 4

5 . While the probability of getting an A given

that the student took Chemistry is 1
7 . If Phan makes a decision on the course to take randomly,

what's probability of �getting an A in Chem�?
� Solution: Let B = {Takes Biology} and C = {Takes Chemistry} and A = {"gets an A"},
then

P (A ∩ C) = P (C)P (A | C)

=
1

2
· 1

7
=

1

14
.

• Example 7: A total of 500 married couples are poled about salaries:

�

Wife Husband makes less than 25,000 Husband makes more than 25,000

Less than $25,000 212 198
More than $25,000 36 54

� Part (a): Find the probability that a Husband earns less than 25,000?
∗ Answer: 212+36

500
� Part (b): Find P (wife makes > 25, 000 | Husband makes > 25, 000)

∗ Answer: 54/500
(198+54)/500 = 54

252 = .214

� Part (c): Find P (wife makes > 25, 000 | Husband makes < 25, 000)

∗ Answer: 36/500
(248)/500 = .145.
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4.2. Bayes's Formula

• Sometimes it's easier to compute a probability once we know something has or has not happened.
• Note that we can compute,

P (E) = P (E ∩ F ) + P (E ∩ F c)
= P (E | F )P (F ) + P (E | F c)P (F c)

= P (E | F )P (F ) + P (E | F c) (1− P (F )) .

• This formula is called: The Law of Total Probability:

P (E) = P (E | F )P (F ) + P (E | F c) (1− P (F ))

• The following problem will describe the types of problems of this section.
• Example1: Insurance company believes

� The probability that �an accident prone person� has an accident within a year is .4.
� The probability that �Non-accident prone person� has an accident with year is .2.
� 30% of the population is �accident prone�.
� Part (a): Find P (A1) where A1 =new policy holder will have an accident within a year?

∗ Let A = {Policy holder IS accident prone.}
P (A1) = P (A1 | A)P (A) + P (A1 | Ac) (1− P (A))

= .4 (.3) + .2 (1− .3)

= .26

� Part (b): Suppose new policyholder has accident with one year. What's probability that he
or she is accident prone?

P (A | A1) =
P (A ∩A1)

P (A1)

=
P (A)P (A1 | A)

.26

=
(.3) (.4)

.26
=

6

13
.

• In general:
� So in Part (a) we had to break a probability into two cases: If F1, . . . , Fn are mutually exclusive
events such that they make up everythinn S =

⋃n
i=1 Fi then

P (E) =

n∑
i=1

P (E | Fi)P (Fi) .

∗ This is called Law of Total Probability.
� In Part (b), we wanted to �nd a probability of a separate conditional event: then

P (Fj | E) =
P (E | Fj)P (Fj)∑n
i=1 P (E | Fi)P (Fi)

.

∗ This is known as Baye's Formula
∗ Note that the denominator of the Bayes's formula is the Law of total probability.

• Example2: Suppose the test for HIV is
� 98% accurate in both directions
� 0.5% of the population is HIV positive.
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� Question: If someone tests positive, what is the probability they actually are HIV positive?
� Solution: Let T+ = {tests positive} , T− = {tests negative}, while + = {actually HIV positive,}
− = {actually negative}.
∗ Want

P (+ | T+) =
P (+ ∩ T+)

P (T+)

=
P (T+ | +)P (+)

P (T+ | +)P (+) + P (T+ | −)P (−)

=
(.98) (.005)

(.98) (.005) + .02 (.995)

= 19.8%.

• Example3: Suppose
� 30% of the women in a class received an A on the test
� 25% of the men/or else received an A.
� 60% of the class are women.
� Question: Given that a person chosen at random received an A, what is the probability this
person is a women?
∗ Solution: Let A the event that a students receives an A. Let W =being a women,
M =not a women. Want

P (W | A) =
P (A |W )P (W )

P (A |W )P (W ) + P (A |M)P (M)
, by Bayes's

=
.3 (.6)

.3 (.6) + .25 (.4)
=
.18

.28
≈ .64.

• (General Baye's Theorem) Here's one with more than 3 possibilities:
• Example4: Suppose in Factory with Machines I,II,III producing Iphones

� Machines I,II,III produce 2%,1%, and 3% defective iphones, respectively.
� Out of total production, Machines I makes 35% of all Iphones, II-25%, III- 40%.
� If one Iphone is selected at random from the factory,
� Part (a): what is probability that one Iphone selected is defective?

P (D) = P (I)P (D | I) + P (II)P (D | II) + P (III)P (D | III)

= (.35) (.02) + (.25) (.01) + (.4) (.03)

=
215

10, 000
.

� Part (b): What is the conditional prob that if an Iphone is defective, that it was produced by
machine III?

P (III | D) =
P (III)P (D | III)

P (D)

=
(.4) (.03)

215/10, 000
=

120

215
.

• Example5: In a Multiple Choice Test, students either knows the answer or randomly guesses the
answer to a question.
� Let m =number of choices in a question.
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� Let p = the probability that the students knows the answer to a question.
� Question: What is the probability that the student actually knew the answer, given that the
student answers correctly.

� Solution:
� Let K = {Knows the answer} and C = {Answer's correctly}. Then

P (K | C) =
P (C | K)P (K)

P (C | K)P (K) + P (C | Kc)P (Kc)

=
1 · p

1 · p+ 1
m (1− p)

=
mp

1 + (m− 1)p
.



CHAPTER 5

Random Variables

5.1. Random Variables

• When we perform an experiment, we are interested in some function of the outcomes, instead of
the actual outcome.
� We want to attach for each outcome, a numerial value.

• De�nition: A random variable is a function X : S → R or write X : Ω→ R. (Use capital letters
to denote r.v)
� We can think of X as a numerical value that is random, like as if X is a random number.

• Example: Toss a coin
� Let X be 1 if heads and X = 0 if tails
� Then X (H) = 1 and X (T ) = 0.
� We can do calculus on real numbers but not on Ω = S = {H,T}.

• Example: Roll a die
� Let X denote the outcome, so X = 1, 2, 3, 4, 5, 6 (its random)
� That is X(1) = 1, X(2) = 2, . . . .

• Example: Roll a die, de�ne

Y =

{
1 outomce= odd

0 outomce= even

� Can be thought of as

Y (s) =

{
1 s = odd

0 s = even
.

• A common question we'll have is �What values can X attain ?�
� In other words, what is the range of X? Since X : S →?

• Example: Toss a coin 10 times
� Let X be the number of heads showing
� What random values can X be? 0, 1, 2, . . . , 10.

• Example: In general in n trials, X is the number of successes
• Example1: Let X be the amount of liability(damages) a driver incurs in a year.

� X : S → [0,∞).
• Example2: Toss a coin 3 times

� Let X be the number of heads that appear, so X = 0, 1, 2, 3.
� In other words, X : S → {0, 1, 2, 3}

29
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� We may assign probabiliies to the di�erent values of the random variable:

P (X = 0) = P ((T, T, T )) =
1

23
=

1

8

P (X = 1) = P ((T, T,H) , (T,H, T ) , (H,T, T )) =
3

8

P (X = 2) = P ((T,H,H) , (H,H, T ) , (H,T,H)) =
3

8

P (X = 3) = P ((H,H,H)) =
1

8
.

� Note that since X must take the values of 0 through 3 then

1 = P

(
3⋃
i=0

{X = i}

)
=

3∑
i=0

P (X = i) ,

which makes sense from our previous calculation.
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5.2. Discrete Random Variables

Definition. A random variable that can take on at most countable number of possible values is said
to be a discrete r.v.

Definition. For a discrete random variable, we can de�ne the probability mass function (pmf), or
the density function of X by p(x) = P (X = x). Note that p : R→ [0, 1].

• Note that (X = x) = (ω ∈ Ω | X (ω) = x) is an abbreviation.
• Let X assume only the values x1, x2, x3 . . .

� In other words, X : S → {x1, x2, . . . }
� Properties of a pmf p(x):

∗ Note that we must have 0 < p(xi) ≤ 1 for ,i = 1, 2, . . . . and p (x) = 0 for all other values
of x can't attain.

∗ Also must have
∞∑
i=1

p(xi) = 1.

• We often draw bar graphs for discrete r.v.
• Example: If we toss a coin

� X = 1 if we have H and X = 0 if we have T .
� Then draw a BAR graph

pX(x) =


1
2 x = 0
1
2 x = 1,

0 otherwise

• Oftentimes someone has already found the pmf for you, and you can use to compute probabilities.

• Example: The pmf of X is given by p(i) = e−λ λ
i

i! for i = 0, 1, 2, . . . where λ is a parameter(what
is this?) that is any positive number
� Part (a) What values can the random variable X attain? In other words, what is the range
of X?
∗ Sol: By de�nition we have P (X = 0) = p(0) = e−λ λ

0

0! = e−λ

� Part (b) Find P (X = 0)

∗ Sol: By de�nition we have P (X = 0) = p(0) = e−λ λ
0

0! = e−λ

� Part (c) Find P (X > 2)
∗ Sol: Note that

P (X > 2) = 1− P (X ≤ 2)

= 1− P (X = 0)− P (X = 1)− P (X = 2)

= 1− p(0)− p(1)− p(2)

= 1− e−λ − λe−λ − λ2e−λ

2
.
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5.3. Expected Value

• One of the most important concepts in probability is that of expectation. If X is a random variable
that what is the average value of X, that is what is the expected value of X.

Definition. Let X have a pmf p(x). We de�ne the expectation, or expected value of X to be

E [X] =
∑

x:p(x)>0

xp(x).

• Notation EX, or EX.
• Example1: Let X(H) = 0 and X (T ) = 1. What is EX?

EX = 0 · p(0) + 1 · p(1)

= 0
1

2
+ 1 · 1

2
=

1

2
.

• Example2: Let X be the outcome when we roll a fair die. What is EX?

EX = 1

(
1

6

)
+ 2

(
1

6

)
+ · · ·+ 6

1

6

=
1

6
(1 + 2 + 3 + 4 + 5 + 6) =

21

6
=

7

2
= 3.5

� Note that X can never be 3.5 , so expectation is to give you an idea, what an exact.
• Recall in�nite series: If 0 ≤ x < 1 then a geometric series is

∞∑
n=0

xn = 1 + x+ x2 + x3 + · · ·

=
1

1− x
.

� One thing you can do with series is di�erentiate them and integrate them: So if

1 + x+ x2 + x3 + · · ·+ =
1

1− x

then

0 + 1 + 2x+ 3x2 + · · ·+ =
1

(1− x)
2

• Example3: Let X be the number or tornados in Connecticut per year. Meaning that the random
variable X can be any number X = 0, 1, 2, 3, . . . . Suppose the state of Connecticut did some
analysis and found out that

P (X = i) =
1

2i+1
.

� Question: What is EX? That is, what is the expected number of tornados per year in
Connecticut.

� Solution: Note that X is in�nite, but still countable, hence still discrete.
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� Note that

p(i) =



1
2 i = 0,
1
4 i = 1,
1
8 i = 2,
...

...
1

2n+1 i = n.

� We have that

EX = 0 · p(0) + 1 · p(1) + 2 · p(2) + · · ·

= 0 · 1

2
+ 1

1

22
+ 2

1

23
+ 3

1

24
+ · · ·

=
1

22

(
1 + 2

1

2
+ 3

1

22
+ · · ·

)
=

1

4

(
1 + 2x+ 3x2 + · · ·

)
, withx =

1

2

=
1

4

1

(1− x)
2 =

1

4
(
1− 1

2

)2 = 1.
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5.4. The C.D.F.

Definition. De�ne F : R→ [0, 1] to be the function

F (x) = P (X ≤ x) , for any −∞ < x <∞

to be the cumulative distribution function, or the distribution function of X., or CDF of X, or c.d.f

• Note that when X is discrete,

F (x0) = P (X ≤ x0) =
∑
x≤x0

p(x).

• We sometimes use the notation FX(x) to highlight that FX is the CDF of the random variable X.

• Example: Suppose X is equals to the number of heads in 3 coin �ips. From Section 5.1, we
calculated the p.m.f to be.:

p(0) = P (X = 0) =
1

8

p(1) = P (X = 1) =
3

8

p(2) = P (X = 2) =
3

8

p(3) = P (X = 3) =
1

8
.

Question: Find the c.d.f of X. Plot the graph of the c.d.f.
� Solution: Summing up the probabilities up to that value of x we get the following:

F (x) =



0 −∞ < x < 0
1
8 0 ≤ x < 1
4
8 1 ≤ x < 2
7
8 2 ≤ x < 3

1 3 ≤ x <∞

.

� The graph is given by

∗
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� Note that this is a step function.
� This function has jumps, and not continouous everywhere.
� But it looks like it never decreases.

• Properties of the CDF:
� 1. F is nondecreasing , that is

∗ if x < y then F (x) ≤ F (y)
� 2. limx→∞ F (x) = 1.
� 3. limx→−∞ F (x) = 0.
� 4. F is right continuous. That are two ways that you can think of right continuity:

∗ limx→1+ F (xn) = F (x), meaning �the limit from the right equals where the function is
de�ned�

∗ If xn ↓ x is a decreasing sequence then limn→∞ F (xn) = F (x).
• We take these properties as facts, though one would normally have to prove these.
• The following proposition does not have to be proved in class, and can be highlighted with the
following example. But we include it here for completeness.

Proposition 3. Let FX(x) be the CDF for some random variable X. Then the following holds:
(a) For any a ∈ R, we have P (X < a) = limx→a− FX(x)
(b) For any a ∈ R, we have P (X = a) = FX(a)− limx→a− FX(x)

Proof. For part (a).
We �rst write

(X < a) =

∞⋃
n=1

(
X ≤ a− 1

n

)

= (X ≤ a− 1)
⋃[ ∞⋃

n=1

(
a− 1

n
< X ≤ a− 1

n+ 1

)]

and since the events En =
(
a− 1

n ≤ X ≤ a−
1

n+1

)
are disjoint then we can use Axiom 3 so prove that

P (X < a) = P (X ≤ a− 1) +

∞∑
n=1

P
(
a− 1

n
< X ≤ a− 1

n+ 1

)

= P (X ≤ a− 1) + lim
k→∞

k∑
n=1

[
P
(
X ≤ a− 1

n+ 1

)
− P

(
X ≤ a− 1

n

)]
= P (X ≤ a− 1) + lim

k→∞

[
P
(
X ≤ a− 1

k + 1

)
− P (X ≤ a− 1)

]
, by telescoping

= lim
k→∞

P
(
X ≤ a− 1

k + 1

)
+ P (X ≤ a− 1)− P (X ≤ a− 1)

= lim
n→∞

FX

(
a− 1

n

)
.

Now you can replace the sequence an = a− 1
n with any sequence an that is increasing towards a, and we get

the similar result,

lim
n→∞

FX (an) = P (X < a) ,
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since this holds for all increasing sequences an towards a, then we've shown that

lim
x→a−

FX(x) = P (X < a) .

For part (b). We use part (a) and get

P (X = a) = P (X ≤ a)− P (X < a)

= FX(a)− lim
x→a−

FX(x).

�

• Example: Let X have distribution

F (x) =



0 x < 0
x
2 0 ≤ x < 1
2
3 1 ≤ x < 2
11
12 2 ≤ x < 3

1 3 ≤ x.
Graph this and answer the following:
� Part (a): Compute P(2 < X ≤ 4). We have that

P(2 < X ≤ 4) = P(X ≤ 4)− P (X ≤ 2)

= F (4)− F (2)

=
1

12
.

� Part (b): Compute P (X < 3).
∗ We have that

P (X < 3) = lim
n→∞

P
(
X ≤ 3− 1

n

)
= lim
x→3−

FX(x)

=
11

12

� Part (c): Compute P(X = 1).
∗ We have that

P(X = 1) = P(X ≤ 1)− P (X < 1)

= FX(1)− lim
x→1−

FX(x)

=
2

3
− lim
x→1

x

2

=
2

3
− 1

2
=

1

6
.
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5.5. Expectated Value of Sums of Random Variables

• Recall our current de�nition of EX
� List out X = x1, x2, . . . and let p(xi) be the density of X

� Then EX =

∞∑
i=1

xip(xi).

• We need a new de�nition that will help the linearity of expectation.
� Goal: If Z = X + Y then E [X + Y ] = EX + EY .

• De�nition 2: Let S (or Ω ) be the sample space then de�ne

EX =
∑
ω∈S

X(ω)P ({ω}) .

� Example: Let S = {1, 2, 3, 4, 5, 6} and X(1) = X(2) = 1 and X(3) = X(4) = 3 and
X(5) = X(6) = 5
∗ Def1: We know X = 1, 3, 5 with p(1) = p(3) = p(5) = 1

3

∗ Then EX = 1 · 1
3 + 3 1

3 + 5 1
3 = 9

3 = 3.
∗ Def2: We list all of S = {1, 2, 3, 4, 5, 6} and
∗ Then

EX = X(1)P ({1}) + · · ·+X(6) · P ({6})

= 1
1

6
+ 1

1

6
+ 3

1

6
+ 3

1

6
+ 5

1

6
+ 5

1

6
= 3.

• Di�erence
� Def1: We list all the values that X can attain and only care about those. (Range)
� Def2: List all possible outcomes. (Domain)

Proposition 4. If X is a discrete random variable and S is countable, then the two de�nitions are
equivalent

• NOTE: No need to prove in lecture. But here for completeness.

Proof. We start with the �rst de�nition. Let X = x1, x2, . . .

EX =
∑
xi

xip(xi)

=
∑
xi

xiP (X = xi)

=
∑
xi

xi
∑

ω∈{ω:X(ω)=xi}

P (ω)

=
∑
xi

∑
ω∈{ω:X(ω)=xi}

xiP (ω)

=
∑
xi

∑
ω∈{ω:X(ω)=xi}

X(ω)P (ω)

=
∑
ω∈S

X(ω)P (ω) ,

where I used that each Si = {ω : X(ω) = xi} are mutually exclusinve events that union up to S. �
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• Using this de�nition, we can prove linearity of the expectation.

Theorem 5. (Linearity) If X and Y are discrete random variables and a ∈ R then
(a) E [X + Y ] = EX + EY .
(b) E [aX] = aEX.

Proof. We have that

E [X + Y ] =
∑
ω∈S

(X(ω) + Y (ω))P (ω)

=
∑
ω∈S

(X(ω)P (ω) + Y (ω)P (ω))

=
∑
ω∈S

X(ω)P (ω) +
∑
ω∈S

Y (ω)P (ω)

= EX + EY.
If a ∈ R then

E [aX] =
∑
ω∈S

(aX(ω))P (ω)

= a
∑
ω∈S

X(ω)P (ω)

= aEX.
�

• Generality: Linearity is true for general random variable X1, X2, . . . , Xn.
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5.6. Expectation of a Function of a Random Variable

• Let X be a random variable.
� Can we �nd the expected value of things like X2, eX , sinX etc?

• Example1: Let X denote a random variable such that

P (X = −1) = .2,

P (X = 0) = .5

P (X = 1) = .3

Let Y = X2. Find EY .
� Solution: Note that Y =

{
02, (−1)

2
, (1)

2
}

= {0, 1}.
� Note that pY (1) = .2 + .3 = .5 and pY (0) = .5.
� Thus EY = 0 · .5 + 1 · .5 = .5.

• IMPORTANT:
� Note that EX2 = .5 .
� While (EX)

2
= .01. Not equal!

∗ Since EX = .3− .2 = .1. Thus

EX2 6= (EX)
2
.

• In general, there is a formula for g(X) where g is function. That use the fact that g(X) will be
g(x) for some x such that X = x.

Theorem 6. If X is a discrete random varianle that takes values X ∈ {x1, x2, x3, . . . } with respective
probability mass function p(xi), then for any real valued function g : R→ R we have that

E [g (X)] =

∞∑
i=1

g (xi) p(xi).

• NOTE: No need to prove in lecture. But here for completeness.

Proof. The random variable Y = g(X) can take on values, say Y = y1, y2, . . . . But we know that

yj = g(xi)

and as we see there could be more than one value xi such that yj = g(xi). Thus we will group this sum into
this fashion: Using the de�nition of expectation we have that

E [Y ] =
∑
j

yjP (Y = yj)

=
∑
j

yjP (g(X) = yj)

= (?).

Now

P (g(X) = yj) = P

 ⋃
i:g(xi)=yj

(g(xi) = yj)


=

∑
i:g(xi)=yj

p(xi).
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Thus plugging this back into (?) we have that

E [Y ] =
∑
j

yj
∑

i:g(xi)=yj

p(xi)

=
∑
j

∑
i:g(xi)=yj

yjp(xi)

=
∑
j

∑
i:g(xi)=yj

g(xi)p(xi)

=

∞∑
i=1

g(xi)p(xi),

as needed. �

• Remark: EX2 =
∑
x2
i p(xi).

• Example1(Revisted): Let X denote a random variable such that

P (X = −1) = .2,

P (X = 0) = .5

P (X = 1) = .3

Let Y = X2. Find EY .
� Sol: We have that EX2 =

∑
x2
i p(xi) = (−1)

2
(.2) + 02(.5) + 12(.3) = .5.

Definition. We call µ = EX to be the mean, or the �rst moment of X.
The quantity EXn for n ≥ 1, is called the nth moment of X.

• From out theorem we know that the nth moments can be calculated a

EXn =
∑

x:p(x)>0

xnp(x).
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5.7. Variance

• The variance of a r.v. is a measure of how spread out the values of X are.
• The expectation of a r.v. is quantity that help us di�erentiate di�erent r.v.'s, but it doesn't tell us
how spread out values are.
� For example, take

X = 0 with probability 1

Y =

{
−1 p = 1

2

1 p = 1
2

Z =

{
−100 p = 1

2

100 p = 1
2

.

� What are the expected values? 0, 0, 0.
� But there is much greater spread in Z than Y and Y than X. Thus expectation is not enough
to detect spread, or variation.

Definition. If X is a r.v with mean µ = EX, then the variance of X, denoted by Var(X), is de�ned
by

Var (X) = E
[
(X − µ)

2
]
.

• Remark: Ec = c.
• We prove an alternate formula for the variance. (The technique of using linearity is important
here!!! Hint Hint)

Var (X) = E
[
(X − µ)

2
]

= E
[
X2 − 2µX + µ2

]
= E

[
X2
]
− 2µE [X] + E

[
µ2
]

= E
[
X2
]
− 2µ2 + µ2

= E
[
X2
]
− µ2.

Theorem. We have that

Var (X) = E
[
X2
]
− (E [X])

2
.

• Example1: Calculate Var(X) if X represents the outcome when a fair die is rolled.
� Solution: Previously we calculated that EX = 7

2 .
� Thus we only need to calculate the second moment:

EX2 = 12

(
1

6

)
+ · · ·+ 62 1

6

=
91

6
.
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� Using our formula we have that

Var (X) = E
[
X2
]
− (E [X])

2

=
91

6
−
(

7

2

)2

=
35

12
.

• Here is a useful formula:

Proposition 7. For constants a, b we have that Var (aX + b) = a2Var (X).

Proof. We compute

Var (aX + b) = E
[
(aX + b− E [aX + b])

2
]

= E
[
(aX + b− aµ− b)2

]
= E

[
a2 (X − µ)

2
]

= a2E
[
(X − µ)

2
]

= a2Var (X) .

�

Definition. We de�ne
SD (X) =

√
Var(X)

to be the standard deviation of X.



CHAPTER 6

Some Discrete Distributions

6.1. Bernouli and Binomial Random Variables

• Bernoulli Distribution
� Suppose that a trial or experiment takes place, whose outcome is either success or failure.
� Let X = 1 when the outcome is a success and X = 0 if it is a failure.
� The pmf of X is given by

p(0) = P (X = 0) = 1− p
p(1) = P (X = 1) = p

where 0 ≤ p ≤ 1.
� For this X, X is said to be a Bernoulli random variable with parameter p,

∗ We wrtie this as X ∼ Bernoulli(p),
∗ Properties:

· EX = p · 1 + (1− p) · 0 = p
· EX2 = 12 · p+ 02(1− p) = p.
· So VarX = p− p2 = p(1− p).

• Binomial Distribution:
• We say X has a binomial distribution with parameters n and p if

pX(k) = P (X = k) =

(
n
k

)
pk (1− p)n−k .

� Interpret: X =the number of successes in n indepedent trials.
∗ Let's take this as given.

� We say X ∼ Binomial(n, p) or X ∼ bin(n, p).
• Properties of the Binomial

� Check that probabilities sums to 1: Not really a property but more of a check that X is
indeed a random variable:
∗ We need to check two things:

(1) That pX(k) ≥ 0, and this is obvious from the fomula
(2) Need to check that

∑n
k=0 pX(k) = 1.

∗ First recall the Binomial Theorem:
∑n
k=0

(
n
k

)
xkyn−k = (x+ y)

n
.

� Then
n∑
k=0

pX(k) =

n∑
k=0

(
n
k

)
pk (1− p)n−k = (p+ (1− p))n = 1n = 1.

� Mean: Easiest way to compute EX is by recognizing that X = Y1 + · · · + Yn where Yi are
independent Bernoulli's.

43
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∗ Thus EX = EY1 + · · ·+ EYn = p+ · · ·+ p = np.
∗ We can do this directly too, but this would involve proving that

EX =

n∑
k=0

kp(k) = np,

meaning we would have to prove
n∑
k=0

k

(
n
k

)
pk (1− p)n−k = np.

� Variance: We �rst compute the second moment. As before write X = Y1 + · · · + Yn where
Yi are bernoulli's.

EX2 = E (Y1 + · · ·+ Yn)
2

=

n∑
k=1

EY 2
k +

∑
i 6=j

E [YiYj ]

=

n∑
k=1

p+
∑
i 6=j

E [YiYj ]

= np+
∑
i6=j

E [YiYj ]

= (?)

∗ Now each term E [YiYj ] for �xed i, j can be computed as =

E [YiYj ] = 1 · P (YiYj = 1) + 0 · P (YiYj = 0)

= P ((Yi = 1) ∩ (Yj = 1))

= P (Yi = 1)P (Yj = 1) , by independence

= p2.

∗ Now there are a total of n2 terms is (Y1 + · · ·+ Yn)
2
, n of which are of form Y 2

k . Thus
there are n2 − n terms of the form YiYj with i 6= j.

∗ Hence using (?) we have EX2 = np+
(
n2 − n

)
p2.

∗ Thus

VarX = EX2 − (EX)
2

= np+
(
n2 − n

)
p2 − (np)

2
= np (1− p) .

� Sumarize: EX = np and VarX = np (1− p).
� Moments: We can also prove EXk = npE

[
(Y + 1)

k−1
]
.

• Calculator(TI-84):
� 2ndDistri>binomialpdf(n, p, x)=P (X = x).
� same with cdf.

• Example1: A company prices its hurricane insurance using the following assumptions:
� (i) In any calendar year, there can be at most one hurricane.
� (ii) In any calendar year, the probability of a hurricane is 0.05.
� (iii) The numbers of hurricanes in di�erent calendar years are mutually independent. Using
the company's assumptions, calculate the probability that there are fewer than 3 hurricanes
in a 20-year period
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� Solution: We have that X ∼ bin(20, .05) then

P (X < 3) = P (X ≤ 2)

=

(
20
0

)
(.05)

0
(.95)

20
+

(
20
1

)
(.05)

1
(.95)

19
+

(
20
2

)
(.05)

2
(.95)

12

= .9245.

• Example2: Phan has a .6 probability of making a free throw. Suppose each free throw is inde-
pendent of the other. If he attempts 10 free throws, what is the probability that he makes at least
2 of them?
� Solution: Let X ∼ bin(10, .6) then

P (X ≥ 2) = 1− P (X = 0)− P (X = 1)

= 1−
(

10
0

)
(.6)

0
(.4)

10 −
(

10
1

)
(.6)

1
(.4)

9

= .998.
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6.2. The Poisson Distribution

• We say that X = 0, 1, 2, . . . is Poisson with parameter λ > 0 if

pX(i) = P (X = i) = e−λ
λi

i!
for i = 0, 1, 2, 3, . . . .

� Or X ∼Poisson(λ).
• In general Poisson random variables are of the following form

� Suppose success happens λ times on average in a given period (per year, per month etc). Then
X = number of times sucess happens in that given period.

� Possion is like binomial, excpect, X is in�nitely countable!
• Examples that obey Poisson R.V

� 1. The number of misprints on a page ogf a book
� 2. # of people in community that survive to age 100
� 3. # of telephone numbers that are dialed in a day.
� 4. # of customers entering post o�ce on a day.

• Calc2: Recall that
∑∞
n=0

xn

n! = ex.
• Properties of Poisson: Let X ∼ Poisson(λ)

� First we check that pX(i) is indeed a pmf: First it is obvious that pX(i) ≥ 0 since λ > 0. We
to need to check that all the probabilities add up to one:

∞∑
i=0

pX(i) =

∞∑
i=0

e−λ
λi

i!
= e−λ

∞∑
i=0

λi

i!
= e−λeλ = 1.

� Mean: We have

EX =

∞∑
i=0

ie−λ
λi

i!
= e−λλ

∞∑
i=1

λi−1

(i− 1)!

= e−λλeλ = λ.

� Variance: We �rst have

EX2 =

∞∑
i=0

i2
e−λλi

i!

= λ

∞∑
i=0

i
e−λλi−1

(i− 1)!

= λ

∞∑
j=0

(j + 1)
e−λλj

j!
, let j = i− 1

= λ

 ∞∑
j=0

j
e−λλj

j!
+

∞∑
j=0

e−λλj

j!


= λ

[
λ+ e−λeλ

]
= λ (λ+ 1) .

Thus

VarX = λ (λ+ 1)− λ2 = λ.
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• Example1: Suppose on average there are 5 homicides per month in Hartford, CT. What is the
probability there will be at most 1 in a certain month?
� Answer: If X is the number of homicides, we are given that EX = 5. Since the expectation
for a Poisson is λ = 5. Therefore P (X = 0) + P (X = 1) = e−5 + 5e−5.

• Example2: Suppose on average there is one large earthquake per year in Mexico. What's the
probability that next year there will be exactly 2 large earthquakes?

� Answer: λ = EX = 1, so P (X = 2) = e−1

2 .
• Example3: Phan receives texts on the average of two every 3 minutes. Assume Poisson.

� Question: What is the probability of �ve or more texts arriving in a 9−minute period.
� Answer: Let X number of calls in a 9−minute period. Let n = number of periods, λ1 = 2
Thus λ = 3 · 2 = 6. Thus

P (X ≥ 5) = 1− P (X ≤ 4)

= 1−
4∑

n=0

e−66n

n!

= 1− .285 = .715.

• Important: Poisson is similar to Binomial in the following way
� FACT: Poisson approximates Bin(n, p) when n is large and p is small enough so that np is
of moderate size.

Theorem 8. If Xn is binomial with parameters n and pn and npn → λ, then

P (Xn = i)→ P (Y = i)

where Y ∼ Poisson(λ).

Proof. See class textbook. �

• Summary of Theorem: This theorem says that suppose n is large and p is small, Thus
� If X ∼ Bin(n, p) then we approximate X with a possion by letting let λ = np so that

P (X = i) ≈ e−np (np)
i

i!
.

• When can we assume X is Poisson: Another consequence of this theorem says that when
Y =�the number of successes in a given period�. And if the number possible of trials n is large, and
if the probability p of success is small, then Y can be treated as a Poisson random variable.

• NOTE:
� (1)Why is number of misprints on a page will be approximately Poisson with λ = np

∗ Let X = number of misprints on a page of a book.
∗ Since prob of error, say p = .01 is usually small, and number of letters on a page is
usually large, say n = 1000. Then the average is λ = np.

∗ Then because p is small and n is large, then X can be approximated by a Poisson.
� (2) Let X number of accidents in a year

∗ X is Poisson because the probability of an accident p in a given periord is usually small
and while the number n of times someone drives in a given period is high.

• Example: Here is an example showing this.
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� If X is number of times you get heads on a biased coin where P (H) = 1
100 . Suppose you you

toss 1000 times. Then np = 10

P (X = 5) ≈ e−10 105

5!
= .0378

while the actual value is

P (X = 5) =

(
1000

5

)
(.01)

5
(.99)

995

=
1000!

995!5!
(.01)

5
(.99)

995

= .0375.
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6.3. Other Discrete Distributions

• Uniform Distribution:
� We say X is uniform, and write this as X ∼ uniform(n), if X ∈ {1, 2, . . . , n} and

pX(i) = P (X = i) =
1

n
for i = 1, 2, . . . , n.

� Exercise: EX =
∑n
i=1 i

1
n = 1

n

∑n
i=1 i = 1

n
n(n−1)

2 = n−1
2 and �nd VarX.

• Geometric Distribution:
� Experiment: Suppose that independent trials are held until success occurs. Trials are stopped
once success happens. Let p be the probabiliy of having a success in each trial.

� Let X = �number of trials required until �rst success occurs�. Thus X ∈ {1, 2, 3, 4, . . . }Here
we have

pX(i) = P (X = i) = (1− p)i−1
p fori = 1, 2, 3, 4 . . . .

� We say X ∼ geometric(p).
� Properties:

∗ We �rst double check is indeed a discrete random variable: This follows from what we
know about geometric series:

∞∑
i=1

P (X = i) =

∞∑
i=1

(1− p)i−1
p =

p

1− (1− p)
= 1.

∗ Mean: Recall that by di�erentiation of the geometric series, we came up with the
formula

∑∞
n=0 nx

n−1 = 1
(1−x)2 , so that

EX =

∞∑
i=1

iP (X = i)

=

∞∑
i=1

i (1− p)i−1
p

=
p

(1− (1− p))2
=

1

p
.

∗ Variance:(Leave as Exercise for student) Note that

EX2 =

∞∑
i=1

i2 (1− p)i−1
p. (?)

Thus we can di�erentiate
∑∞
n=1 nx

n−1 = 1
(1−x)2 again to get

∑∞
n=2 n (n− 1)xn−2 =

2
(1−x)3

.
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∗ From this we will attempt to get EX2 in (?) by splitting the sum up:

∞∑
n=2

n (n− 1) (1− p)n−2
=

2

(1− (1− p))3 =
2

p3
,

∞∑
n=2

n (n− 1) (1− p)n−2
p =

2

p2
, now split,

∞∑
n=2

n2 (1− p)n−2
p =

2

p2
+

∞∑
n=2

n (1− p)n−2
p

(1− p)−1
∞∑
n=1

n2 (1− p)n−1
p =

2

p2
+

∞∑
n=2

n (1− p)n−2
p+ (1− p)−1

p

(1− p)−1 EX2 =
2

p2
+ (1− p)−1

∞∑
n=1

n (1− p)n−1
p

=
2

p2
+ (1− p)−1 1

p

Thus

EX2 =
2 (1− p)

p2
+

1

p

=
2− 2p+ p

p2
=

2− p
p2

∗ So Thus

VarX = EX2 − (EX)
2

=
2− p
p2
− 1

p2

=
(1− p)
p2

• Example1: An urn contains 10 white balls and 15 black balls. Balls are randomly selected, one
at a time, until a black one is obtained. If we assume that each ball selected is replaced before the
next one is drawn, what is the probability.
� Part (a): Exactly 6 draws are needed?

∗ X =number of draws needed to select a black ball, the probability of sucess is

p =
15

10 + 15
=

15

25
= .6.

∗ Thus

P (X = 6) = (.4)
6−1

(.6) = .006144

� Part (a): What is the expected number of draws in this game?
∗ Since X ∼ geometric(.6) then

EX =
1

p
=

10

6
= 1.6̄

� Part (c)(Extra Problem to be done at home) Find exactly that probability at least k
draws are needed?
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∗ We have that

P (X ≥ k) =

∞∑
n=k

P (X = k)

=

∞∑
n=k

(.4)
n−1

(.6)

= (.6) (.4)
−1

∞∑
n=k

(.4)
n

= (.6) (.4)
−1

(.4)
k
∞∑
n=0

(.4)
n

= (.6) (.4)
k−1 1

1− .4
= (.4)

k−1
.

• Note: This could have been done for a general p. Thus

P (X ≥ k) = (1− p)k−1
.

• Negative Binomial(Need to know for Actuarial Exam):
� Experiment: Suppose that independent trials are held with probability p of having a success.
The trials are perfomed until a total of r sucesses are accumulated.
∗ Let X equal the number of trials required to obtain r succeses. Here we have

P (X = n) =

(
n− 1
r − 1

)
pr (1− p)n−r forn = r, r + 1, . . . .

� We say X ∼ NegativeBinomial(r, p).
� Properties:

∗ This is a probability mass function. Can check that
∑∞
n=r P (X = n) = 1.

∗ Mean:

EX =
r

p
.

∗ Variance:

Var(X) =
r(1− p)
p2

.

� Note that Geometric(p) = NegativeBinomial (1, p).
• Example: Find the expected value of the number of times one must throw a die until the outcome

1 has occured 4 times.
� Solution: X ∼ NegativeBinomial

(
4, 1

6

)
. So

EX =
4
1
6

= 24.

• Hypergeometric Distribution(Need to know for Actuarial Exam):
� Experiment: Suppose that a sample of size n is to be chosen randomly (without replacement)
from an urn containing N balls, of which m are white and N −m are black.
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∗ Let X equal the number of white balls selected. Then

P (X = i) =

(
m
i

)(
N −m
n− i

)
(
N
n

) forn = 0, 1, . . . , n.

� We say X ∼ Hypergeometric(n,N,m).
� Properties:

∗ Mean:

EX =
nm

N
.

∗ Variance:

Var(X) = n
m

N

(
1− m

N

)(
1− n− 1

N − 1

)
.
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Continuous Random Variables

7.1. Intro to continuous R.V

Definition. A random variable X is said to have a continuous distribution if there exists a non-
negative function f such that

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx

for every a and b. [Sometimes we write that for nice sets B ⊂ R we have P (X ∈ B) =
∫
B
f(x)dx.]

We call f the pdf (probability density function) for X. Sometime we we the notation fX to signify
fX correponds to the pdf of X. We sometimes call fX the density of X.

• In fact, any function f satisfying the following two properties is called a density, and could be
considered a pdf of some random variable X:
(1) f(x) ≥ 0 for all x
(2)

∫∞
−∞ f(x)dx = 1.

• Important Note!
� (1) In this case X : S → R and the could attain uncountably many values (doesn't have to
discrete)

� (2)
∫∞
−∞ f(x)dx = P (−∞ < X <∞) = 1.

� (3) P (X = a) =
∫ a
a
f(x)dx = 0.

� (4) P (X < a) = P (X ≤ a) = F (a) =
∫ a
−∞ f(x)dx.

∗ Recall that F is the cdf of X.
� (5) Draw a pdf of X

∗ Note that P (a < X < b) is just the area under the curve.
• Remark: What are some random variables that are considered continuous?

� Let X be the time it takes it take for a student to �nish a probability exam. X ∈ (0,∞).
� Let X be the value of a Apple's stock price at the end of the day. Again X ∈ [0,∞).
� Let X be the height of a college student.
� Any sort of continuous measurement can be considered a continuous random variable.

• Example1: Suppose we are given

f(x) =

{
c
x3 x ≥ 1

0 x < 1

is the pdf of X. What must the value of c be?
� Solution: We would need

1 =

∫ ∞
−∞

f(x)dx = c

∫ ∞
1

1

x3
dx =

c

2
,

53
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thus c = 2.
• Example2: Suppose we are given

fX(x) =

{
2
x3 x ≥ 1

0 x < 1

is the pdf of X from Example1.
� Part (a): Find the c.d.f, FX(x).

∗ Solution: First we check thast if x < 1 then

Fx(x) = P (X ≤ x) =

∫ x

−∞
fX(y)dy =

∫ x

−∞
0dy = 0.

Now when x ≥ 1 we hav e

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(y)dy

=

∫ 1

−∞
0dy +

∫ x

1

2

y3
dy

=

∫ x

1

2

y3
dy

= 1− 1

x2
.

thus

FX(x) =

{
1− 1

x2 x ≥ 1

x x < 1

� Part (b): Use the cdf in Part (a) to help you �nd P (3 ≤ X ≤ 4).
∗ Solution: We have

P (3 ≤ X ≤ 4) = P (X ≤ 4)− P (X < 3)

= FX(4)− FX(3)

=

(
1− 1

42

)
−
(

1− 1

32

)
=

7

144
.

• Fact: For continuous R.V we have the following useful relationship

� Since F (x) =
∫ x
−∞ f(y)dy then by the fundamentat theorem of calculus(Do you remenber this

form Calculus 1 or 2?)
F ′(x) = f(x).

� This means that for continuous random variables, the derivative of the CDF is
the PDF!

• Example3: Let

f(x) =

{
ce−2x x ≥ 0

0 x < 0

Find c.
� Solution: c = 2.
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7.2. Expectation and Variance

• Recall that if p(x) is the pmf (density) of a discrete random variable, we had

EX =

∞∑
i=1

xip(xi).

Definition. If X is continuous with density f(x) then

EX =

∫ ∞
−∞

xf(x)dx.

• Example1: Suppose X has density

f(x) =

{
2x 0 ≤ x ≤ 1

0 otherwise
.

Find EX.
� Solution: We have that

E [X] =

∫ ∞
−∞

xf(x)dx

=

∫ 1

0

x · 2xdx

=
2

3
.

Theorem 9. If X and Y are continuous random variable then
(a) E [X + Y ] = EX + EY .
(b) E [aX] = aEX where a ∈ R.

Proof. See textbook. It will be shown later. �

Proposition. If X is a continuous R.V. with pdf f(x), then for any real valued function g,

E [g(X)] =

∫ ∞
−∞

g(x)f(x)dx.

• Example2: The density of X is given by

f(x) =

{
1
2 if 0 ≤ x ≤ 2

0 otherwise
.

Find E
[
eX
]
.

� Solution: From the previous proposition we have that g(x) = ex in this case thus

EeX =

∫ 2

0

ex · 1

2
dx =

1

2

[
e2 − 1

]
.

Lemma 10. For nonnegative random variable Y ≥ 0 we have

EY =

∫ ∞
0

P (Y > y) dy.

• Bonus:
� This proof is a good practice with interchanging order of integrals in Multivariable Calculus.
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Proof. Recall that dxdy means Right-Left and dydx means Top-Bottom.∫ ∞
0

P (Y > y) dy =

∫ ∞
0

∫ ∞
y

fY (x)dxdy

=

∫ ∫
D

fY (x)dydx, interchange order in Calc III

=

∫ ∞
0

∫ x

0

fY (x)dydx draw the region to do this

=

∫ ∞
0

xfY (x)dx

= EX.

�

• Variance:
� Will be de�ne in the same way as we did with discrete random variable:

Var(X) = E
[
(X − µ)

2
]

Var(X) = EX2 − (EX)
2
.

� As before

Var (aX + b) = a2Var(X).

• Example3: (Example 1 continued) Suppose X has density

f(x) =

{
2x 0 ≤ x ≤ 1

0 otherwise
.

Find Var(X).
� Solution: From Example 1 we found E [X] = 2

3 . Now

E
[
X2
]

=

∫ 1

0

x2 · 2xdx = 2

∫ 1

0

x3dx

=
1

2
.

Thus

Var(X) =
1

2
−
(

2

3

)2

=
1

18
.

• Example4: Suppose X has density

f(x) =

{
ax+ b 0 ≤ x ≤ 1

0 otherwise
.

and that E
[
X2
]

= 1
6 . Find the values of a and b.

� Solution: We need to use the fact that
∫∞
−∞ f(x)dx = 1 and E

[
X2
]

= 1
6 . The �rst one gives

us,

1 =

∫ 1

0

(ax+ b) dx =
a

2
+ b
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and the second one give us

1

6
=

∫ 1

0

x2 (ax+ b) dx =
a

4
+
b

3
.

Solving these equations gives us

a = −2, and b = 2.
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7.3. The uniform Random Variable

• A continuous random variable is said to be uniformly distributed on the interval [a, b] if

fX(x) =

{
1
b−a a ≤ x ≤ b
0 otherwise

.

� So X can only attain values in X ∈ [a, b].
� We say X ∼ Uniform(a, b).
� The cdf is

FX(x) =


0 x < a
x−a
b−a a ≤ x ≤ b
1 x > b

.

• Example1: Suppose X ∼ Uniform(a, b) Part (a) Find the mean of X. Part (b) Find the variance
of X.
� Part (a): We compute

EX =

∫ ∞
−∞

xfX(x)dx =

∫ b

a

x
1

b− a
dx

=
1

b− a

(
b2

2
− a2

2

)
=
a+ b

2
.

∗ Which makes sense right? It should be the midpoint of the interval [a, b].
� Part(b): We compute �rst the second moment

EX2 =

∫ b

a

x2 1

b− a
dx =

1

b− a

(
b3

3
− a3

3

)
=

1

3

1

b− a
(b− a)

(
a2 + ab+ b2

)
=

a2 + ab+ b2

3
.

Thus after some algebra

VarX =
a2 + ab+ b2

3
−
(
a+ b

2

)2

=
(b− a)

2

12
.
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7.4. More practice

• Suppose we are given the pd.f.

f(x) =

{
9e−9x x ≥ 0

0 x < 0

� Part (a): Set up integral to �nd FX(x):
∗ We have for x > 0, that

FX(x) =

∫ x

0

9e−9ydy = 1− e−9x,

so that

FX (x) =

{
1− e−9x x ≥ 0

0 x < 0
/

� Part (b): Set up integral to �nd P (1 < X < 5)

∗
∫ 5

1
9e−9xdx

� Part (c): Set up integral to �nd P (X > 3)
∗
∫∞

3
9e−9xdx.

� Part (s): Set up integral to �nd P (X < 2)

∗
∫ 2

0
9e−9xdx.
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Normal Distributions

8.1. The normal distribution

• We say that X is a normal (Gaussian) random variable, or X is normally distributed with param-
eters µ and σ2 if the density of X is given by

f(x) =
1√
2πσ

e−(x−µ)2/(2σ2).

• We'll usually write X ∼ N
(
µ, σ2

)
.

� Turns out that in practice, many random variable overy the normal distribution
∗ Grades
∗ Height of a man or a women

• Note the following:
� If X ∼ N (0, 1) then ∫ ∞

−∞

1√
2π
e−x

2/2dx = 1.

� To show this we use polar coordinates. Let I =
∫∞
−∞ e−x

2/2dx = 2
∫∞

0
e−x

2/2dx The trick is
to write

I2 = 4

∫ ∞
0

∫ ∞
0

e−x
2/2e−y

2/2dxy

= 4

∫ π/2

0

∫ ∞
0

re−r
2/2dr = 4 · π

2
= 2π,

Thus I =
√

2π as needed.

60
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Theorem 11. To help us compute the mean and variance of X its not too hard to show X ∼ N
(
µ, σ2

)
if and only if

X − µ
σ

= Z where Z ∼ N (0, 1).

Proof. We only show the (⇐=) direction. Note that

FX(x) = P (X ≤ x) = P (σZ + µ ≤ x)

= P
(
Z ≤ x− µ

σ

)
= FY

(
x− µ
σ

)
for σ > 0. Similar for σ < 0. By the chain rule

fX(x) = F ′X(x)

= F ′Y

(
x− µ
σ

)
1

σ

=
fZ
(
x−µ
σ

)
σ

=
1

σ

1√
2π
e−(x−µ)2/(2σ2).

�

• Summary of the normal distribution:
� If X ∼ N

(
µ, σ2

)
then X is normally distributed with

EX = µ,

Var(X) = σ2.

� If X ∼ N (µ, σ2) then X = σZ + µ where Z ∼ N (0, 1). We call Z a standard normal
random variable.
∗ A Table of probabilities for Z will be given!!!
∗ This will be called a z-score table.

• Z scores:
� Because Z ∼ N (0, 1) is so important we give it's cumulative distribution function (cdf) a
name. The distribution FZ(x) of Z is

Φ(x) = P(Z ≤ x) =
1√
2π

∫ x

−∞
e−y

2/2dy.

� NOTE: A table of Φ(x) will be given but only for values of x > 0
� Note this is symmetric[DRAW this ] thus here is an important fact: Φ(−x) = 1− Φ(x)
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Theorem 12. If X ∼ N (µ, σ) then

P (a < X < b) = P
(
a− µ
σ

< Z <
b− µ
σ

)
.

• Example1: Find P (1 ≤ X ≤ 4) if X ∼ N (2, 25).

� Answer: Then µ = 2 and σ2 = 25 thus X−2
5 = Z so that

P (1 ≤ X ≤ 4) = P
(

1− 2

5
≤ X − 2

5
≤ 4− 2

5

)
= P (−.2 ≤ Z ≤ .4)

= P (X ≤ .4)− P (X ≤ −.2)

= Φ(.4)− Φ(−2)

= .6554− (1− Φ (.2))

= .6554− (1− .5793) .

• Example2: Suppose X is normal with mean 6. If P (X > 16) = .0228, then what is the standard
deviation of X?
� Answer: We apply our Theorem that says X−µ

σ = Z is N (0, 1) and get

P (X > 16) = .0228 ⇐⇒ P
(
X − 6

σ
>

16− 6

σ

)
= .0228

⇐⇒ P
(
Z >

10

σ

)
= .0228

⇐⇒ 1− P
(
Z ≤ 10

σ

)
= .0228

⇐⇒ 1− Φ

(
10

σ

)
= .0228

⇐⇒ Φ

(
10

σ

)
= .9772.

Using the standard normal table we see that Φ (2) = .9772, thus we must have that

2 =
10

σ

and hence σ = 5.
• Example (Extra): Suppose X ∼ N (3, 9) �nd P (|X − 3| > 6).
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� Answer: Get

P (|X − 3| > 6) = P (X − 3 > 6) + P (− (X − 3) > 6)

= P (X > 9) + P (X < −3)

= P (Z > 2) + P (Z < −2)

= 1− Φ(2) + Φ(−2)

= 2 (1− Φ(2))

≈ .0456.

• FACT: The 68− 95− 99.7 Rule
� About 68% of all area is contained within 1 standard deviation of the mean
� About 95% of all area is contained within 2 standard deviation of the mean
� About 99.7% of all area is contained within 3 standard deviation of the mean
� This can be explained by the following graph:
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Normal approximations to the binomial

9.1. The normal approximates Binomial

Theorem 13. If Sn is a binomial with parameter n and p, then

P

(
a ≤ Sn − np√

np (1− p)
≤ b

)
→ P (a ≤ Z ≤ b)

as n→∞ where Z is a N (0, 1).

• Recall that if Sn ∼ Bin (n, p) then its mean is µ = np and standard deviation is σ =
√
np(1− p).

� So what this theorem says is that if you want to compute P (c ≤ Sn ≤ d) then using the fact
that

Sn − np√
np (1− p)

≈ Z

or
Sn − µ
σ

≈ Z,

then

P (c ≤ Sn ≤ d) = P
(
c− µ
σ
≤ Sn − µ

σ
≤ d− µ

σ

)
≈ P

(
c− µ
σ
≤ Z ≤ d− µ

σ

)
.

• Note that Sn is really discrete. In fact Sn ∈ {0, 1, 2, . . . , 100}, while the normal distribution is
continuous!
� Note that if I tried to estimate an equality : The wrong way to do it would be:

P (Sn = i) = P
(
Sn − µ
σ

=
i− µ
σ

)
≈ P

(
Z =

i− µ
σ

)
= 0

as we know that for continuous random variables X we always have P (X = a) = 0!
� Hence we need inequalities if we want to estimate a discrete random variable using a continuous
random variable.
∗ So we use the following convention. P(Sn = i) = P

(
i− 1

2 < Sn < i+ 1
2

)
.

∗ We have no problem here, because Sn can only be integers, so we'r not hurting anything
by saying � i − 1

2 < Sn < i + 1
2 � as we know that Sn can only be i in that interval

anyways.
• Example: Suppose a fair coin is tossed 100 times.

64



9.1. THE NORMAL APPROXIMATES BINOMIAL 65

� (a) What is the probability there will be more than 60 heads?
� Answer: Let S100 ∼ Bin

(
100, 1

2

)
so that S100 represents the numbers of heads in 100 coin

tosses.
∗ The actual answer would be

P (S100 > 60) =

100∑
i=61

P (S100 = i)

=

100∑
i=61

(
100
i

)(
1

2

)i(
1

2

)100−i

=

100∑
i=61

(
100
i

)(
1

2

)100

.

∗ But this would be almost impossible to do this the long way by hand.
∗ So we will give an approximate answer using the normal distribution:

· So here take µ = np = 50 and σ =
√
np(1− p) =

√
50 1

2 = 5. We want more than

60, so approximate using 60 + 1
5 :

P (S100 > 60) = P (S100 ≥ 60.5) = P
(
S100 − 50

5
≥ 60.5− 50

5

)
≈ P (Z ≥ 2.1)

≈ 1− Φ(2.1)

= .0179

� (b) Estimate the probability of getting exactly 60 heads?

P (Sn = 60) = P (59.5 ≤ Sn ≤ 60.5)

≈ P (1.9 ≤ Z ≤ 2.1)

≈ Φ(2.1)− Φ(1.9).
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Some continuous distributions

10.1. Exponential Random Variables

• A continuous R.V. is said to be exponential with parameter λ if its pdf is

f(x) =

{
λe−λx if x ≥ 0

0 if x < 0

� We write X ∼ exponential (λ).
• Summary:

� CDF: Let a > 0. Note that the cdf is

FX(a) = P (X ≤ a) =

∫ a

0

λe−λydy = −eλy |a0= 1− e−λa.

∗ Thus

P (X > a) = 1− P (X ≤ a) = e−λa.

� Mean: EX = 1
λ Thus λ = 1

µ .

� Variance: We have Var(X) = 1
λ2 .

• How to interpret X
� X = The amount of time until some speci�c event occurs.
� Example:

∗ Time until earthquake occurs
∗ Length of a phone call
∗ Time until an accident happens

• Example1: Suppose that the length of a phone call in minutes is an exponential r.v with average
length 10 minutes.
� Part (a) What's probability of your phone call being more than 10 minutes?

∗ Answer: Here λ = 1
10 thus

P(X > 10) = e−( 1
10 )10 = e−1 ≈ .368.

� Part (b) Between 10 and 20 minutes?
∗ Answer: We have that

P(10 < X < 20) = F (20)− F (10) = e−1 − e−2 ≈ .233.

• Exponential distribution is Memoryless (Markov)
• Example2: Suppose the life of an iphone has exponential distribution with mean life of 4 years.

� Part(a): What is the probability the phone lasts more than 5 years?
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� Answer: Let X denote the life of an iphone (or time until it dies). Note that X ∼
exponential( 1

4 ) since λ = 1
µ = 1

4 . Then

P (X > 5) = e−
1
4 ·5.

� Part(b): Given that the iphone has already lasted 3 years, what is the probability that it will
last another 5 more years?

� Answer: We compute

P (X > 5 + 3 | X > 3) =
P ((X > 8) ∩ (X > 3))

P (X > 3)

=
P (X > 8)

P (X > 3)

=
e−

1
4 ·8

e−
1
4 ·3

= e−
1
4 ·5.

� Memoryless: Note that the probability of lasting 5 more years, is the same as if it started 5
years from anew!!

• In general the memoryless property says that if t, s > 0 then

P (X > t+ s | X > t) = P (X > s) .

Theorem 14. If X is an exponential random variable, then X is memoryless.

Proof. To show this we have

P (X > t+ s | X > t) =
P ((X > t+ s) ∩ (X > t))

P (X > t)

=
P (X > t+ s)

P (X > t)

=
e−λ(t+s)

e−λt

= e−λs

= P (X > s) ,

as needed. �

• Example3:(Exam P Q29)
� The # of days from beginning of a calendar year until accident for a BAD driver is exponentially
distributed

� An insurance company expects 30% of BAD drivers will have an accident during �rst 50 days.
� Q: Whats prob that a BAD driver will have Accident during �rst 80 days?
� Answer:
� Step1: Let X ∼ exp(λ) number of days until accident. We know

.3 = P (X ≤ 50) =

∫ 50

0

λe−λxdx = −e−λt |50
0 = 1− e−50λ.

� Solve for λ and get λ = − 1
50 ln .7.
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� Step2: Then compute

P (X ≤ 80) =

∫ 80

0

λe−λxdx = −e−λt |80
0 = 1− e−80λ

= 1− e(
80
50 ) ln .7 = .435.
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10.2. Other Continuous Distributions

• Gamma Distribution:
� We say X ∼ Gamma (α, λ) has density

f(x) =

{
λe−λx(λx)α−1

Γ(α) x ≥ 0

0 x < 0

where Γ(α) is the Gamma function

Γ(α) =

∫ ∞
0

e−yyα−1dy.

� If Y ∼ Gamma
(
n
2 ,

1
2

)
= χ2

n , this is called the Chi-Squared distribution.
� The chi-sqaure distribution is used a lot in statistics.

∗ Its mean is EX = α
λ and VarX = α

λ2 .
• Weibull Distribution:

� Usefull in engineering: Look in the book for its pdf.
� X =. If there is an object consisting many parts, and suppose that the object experiences
death once any of tis parts fails. X = lifetime of this object.

• Cauchy Distribution:
� We say X is cauchy with parameter −∞ < θ <∞ if

f(x) =
1

π

1

1 + (x− θ)2 .

� Importance: It does not have �nite mean: That is EX =∞.
� To see this, We compute for θ = 0

EX =
1

π

∫ ∞
−∞

x

1 + x2
dx

∼ 1

π

∫ ∞
−∞

1

x
dx

∼ lim
x→∞

ln |x| − ln lim
x→−∞

|x|

which is not de�ned.
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10.3. The distribution function of a Random variable

• Fact: For continuous R.V we have the following usefull relationship

� Since F (x) = P (X ≤ x) =
∫ x
−∞ f(y)dy then by the fundamentat theorem of calculus we have

F ′(x) = f(x).

• Example1: If X is continuous with distribution function FX and density function fX , �nd a
fomula for the density function of the random varianle Y = 2X.
� Solution: First you start with the distribution of Y :
� Step1: First start by writing the cdf of Y and in terms of FX :

FY (x) = P (Y ≤ x)

= P (2X ≤ x)

= P
(
X ≤ x

2

)
= FX

(x
2

)
.

� Step2: Then use the relation fY (y) = F ′Y (y) and take a derivative of both sides to get

F ′Y (x) =
d

dx

[
FX

(x
2

)]
,

F ′Y (x) = F ′X

(x
2

)
·
(x

2

)′
, by chain rule on RHS

fY (x) = fX

(x
2

) 1

2
.

• Goal: To be able to compute the cdf and pdf of Y = g(X) where g : R → R is a function given
that we know the cdf and pdf of X.
� Why is this useful?

∗ For example supposeX represent the income for a random US worker. And let Y = g (X)
be the amount of taxes a US worker pays per year. Note that taxes Y is dependent on
the random variable X. So if we only care about the random varibale Y then �nding
its PDF and CDF can help us �nd out everything we need to know about Y given we
can �nd the PDF. Recall that any probability and expected value can be found using
the pdf.

• Example2: Let X ∼ Uniform ((0, 10)) and Y = e3X . Find the pdf fY of Y .
� Solution: Recall that since X ∼ Uniform ((0, 1)) then

fX(x) =

{
1
10 0 < x < 10

0 otherwise
.
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� Step1: First start by writing the cdf of Y and in terms of FX :

FY (y) = P (Y ≤ y)

= P
(
e3X ≤ y

)
, then solve for X

= P (3X ≤ ln y)

= P
(
X ≤ 1

3
ln y

)
= FX

(
1

3
ln y

)
.

� Step2: Then use the relation fY (y) = F ′Y (y) and take a derivative

fY (y) = F ′Y (y)

=
d

dy

[
FX

(
1

3
ln y

)]
, use chain rule

= F ′X

(
1

3
ln y

)
1

3y

= fX

(
1

3
ln y

)
1

3y
, since F ′X = fX

=

{
1
10 ·

1
3y 0 < 1

3 ln y < 10

0 otherwise

� but since

0 <
1

3
ln y < 10 ⇐⇒ 0 < ln y < 30

⇐⇒ e0 < y < e30

⇐⇒ 1 < y < e30.

� then

fY (y) =

{
1

30y 1 < y < e30

0 otherwise
.

• Example3: Let X ∼ Uniform ((0, 1]) and Y = −lnX. Find the pdf of Y ? What distribution is
it?
� Solution: Recall that

fX(x) =

{
1 0 < x < 1

0 otherwise
.

� Step1: First start with the cdf and write it terms of FX

FY (x) = P (Y ≤ x)

= P (−lnX ≤ x)

= P (lnX > −x)

= P
(
X > e−x

)
= 1− P

(
X ≤ e−x

)
= 1− FX

(
e−x

)
.
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� Step2: Then take a derivative

fY (x) = F ′Y (x)

= 1− d

dx
FX
(
e−x

)
= −F ′X(e−x) ·

(
−e−x

)
= −fX(e−x) ·

(
−e−x

)
= fX(e−x) · e−x

=

{
1 · e−x 0 < e−x < 1

0 otherwise

=

{
e−x −∞ < −x < 0

0 otherwise

=

{
e−x 0 < x <∞
0 otherwise

� Thus Y ∼ exponential (1).
• Example4: Suppose X is uniform on

(
−π2 ,

π
2

)
and Y = tanX. Find the density of Y and what

known distribution is it?
� Solution:
� Step1: Find the cdf and write in terms of FX

FY (x) = P (tanX ≤ x)

= P
(
X ≤ tan−1 x

)
= FX(tan−1 x)

� Step2: Take a derivative and recall that since 1
π
2 +π

2
= 1

π then

fX(x) =

{
1
π −π2 < x < π

2

0 otherwise.

Thus

fY (x) = F ′Y (x)

=
d

dx
FX(tan−1 x)

= F ′X
(
tan−1 x

) (
tan−1 x

)′
= F ′X

(
tan−1 x

) 1

1 + x2

=

{
1
π

1
1+x2 −π2 < tan−1 x < π

2

0 otherwise.

=

{
1
π

1
1+x2 −∞ < x <∞

0 otherwise.

� Thus Y is Cauchy(0).
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• Exercise: Show that if Z ∼ N (0, 1) then Y = Z2 is a Gamma with parameter 1
2 and 1

2 .
• Example5:(Actuarial Exam type question) The time, T , that a manufacturing system is out of
operation has cumulative distribution function

F (t) =

{
1−

(
2
t

)2
, t > 2

0 otherwise
.

The resulting cost to the company is Y = T 2. Let fY be the density function for Y . Determine
fY (y), for y > 4.
� Answer:
� Step1: Find the cdf of Y is and

FY (y) = P
(
T 2 ≤ y

)
= P (T ≤ √y)

= F (
√
y)

= 1− 4

y

for y > 4.
� Step2: Take a derivative

fY (y) = F ′Y (y)

=
4

y2
.

• One thing to note, is that we've been using the following useful property:

Proposition 15. Suppose g : R→ R is a strictly increasing function, then the inverse g−1 exists and

g(x) ≤ y implies x ≤ g−1 (y) .



CHAPTER 11

Multivariate distributions

11.1. Joint distribution functions

• We discuss the collection of random variables (X1, . . . , Xn).
• Discrete:

� For random variables X,Y we let p (x, y) be the joint probability mass(discrete density)
function

p(x, y) = P (X = x, Y = y) .

∗ Properties of joint pmf:
· 1) 0 ≤ p ≤ 1
· 2)

∑
i

∑
j p(xi, yj) = 1

� We also have the multivariate cdf:(??) de�ned by

FX,Y (x, y) = P (X ≤ x, Y ≤ y) .

• Example1: Experiment: Suppose you roll two 3-sided die.
� Let X be the largest value obtained on any of the two dice . Let Y be the sum of the two
dice. Find the joint pmf of X and Y .

� Solution: First need to �nd the values of X = 1, 2, 3 and Y = 2, 3, 4, 5, 6.
� The table for possible outcomes and their associated values (X,Y ):

�

outcome 1 2 3

1 (X = 1, Y = 2) = (1, 2) (2, 3) (3, 4)
2 (2, 3) (2, 4) (3, 5)
3 (3, 4) (3, 5) (3, 6)

� Using this table we have that the p.m.f. is given by:

�

X\Y 2 3 4 5 6

1 P (X = 1, Y = 2) = 1
9 0 0 0 0

2 0 2
9

1
9 0 0

3 0 0 2
9

2
9

1
9

� Question: Find P (X = 2 | Y = 4)?

∗ Answer: P (X = 2 | Y = 4) = 1/9
3/9 = 1

3 .

• Continuous
� For random variables X,Y we let f (x, y) be the joint probability density function, if

P (a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ b

a

∫ d

c

f(x, y)dydx.
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which is equivalent to saying that for any set D ⊂ R2 then

P ((X,Y ) ∈ D) =

∫ ∫
D

f(x, y)dA.

∗ Properties:
· 1) f(x, y) ≥ 0
· 2)

∫∞
−∞

∫∞
−∞ f(x, y)dxdy = 1.

� We also have the multivariate cdf:(??) de�ned by

FX,Y (x, y) = P (X ≤ x, Y ≤ y) .

∗ Note that FX,Y (a, b) =
∫ a
−∞

∫ b
−∞ f(x, y)dydx.

� Thus note that

f(x, y) =
∂2F (x, y)

∂x∂y
.

� Marginal Density: If fX,Y is the joint density of X,Y . We recover the marginal densities
of X,Y respectively by the following

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy,

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx.

• Example2: Let X,Y have joint pdf

f(x, y) =

{
ce−xe−2y , 0 < x <∞, 0 < y <∞
0 otherwise

.

� Part(a): Find c that makes this a joint pdf:
∗ Sol: Step1: Draw region of Domain �rst!!!

·
∗ Thus

1 =

∫ ∞
0

∫ ∞
0

ce−xe−2ydxdy = c

∫ ∞
0

e−2y
[
−e−x

]x=∞
x=0

dy

= c

∫ ∞
0

e−2ydy = c

[
−1

2
e−2y

]∞
0

= c
1

2
.

Then c = 2.
� Part(b): Find P (X < Y ).

∗ Sol: Need to draw the region (Recall Calc III!!) LetD = {(x, y) | 0 < x < y, 0 < y <∞}
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·
· There are two ways to set up this integral:
· Method1: To set up dA = dydx. We use the Top-Bottom Method:
· Where the region is bounded by

Top Function:y =∞
Bottom Functiony = x

Range of Values0 ≤ x ≤ ∞

· Hence we use this information to set up

P (X < Y ) =

∫ ∫
D

f(x, y)dA

=

∫ ∞
0

∫ ∞
x

2e−xe−2ydydx

=

∫ ∞
0

2e−x
1

2

[
−e−2y

]y=∞
y=x

dx

=

∫ ∞
0

e−xe−2xdx =

∫ ∞
0

e−3xx

=
1

3
.

· Method2: To set up dA = dxdy. We use the Right-Left Method:
· Where the region is bounded by

Right Function:x = y

Left Functionx = 0

Range of Values0 ≤ y ≤ ∞

· Hence we use this information to set up

P (X < Y ) =

∫ ∫
D

f(x, y)dA

=

∫ ∞
0

∫ y

0

2e−xe−2ydxdy

= do some work

=
1

3
,

which matches the answer from before.
� Part(c): Set up P (X > 1, Y < 1)
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∗ The region is given by
∗ Setting this up we have

P (X > 1, Y < 1) =

∫ 1

0

∫ ∞
1

2e−xe−2ydxdy.

� Part(d): Find the marginal fX(x):
∗ Sol:
∗ Then

fX(x) =

∫ ∞
0

f(x, y)dy =

∫ ∞
0

2e−xe−2ydy

= 2e−x
[
−1

2
e−2y

]∞
0

= 2e−x
[
0 +

1

2

]
= e−x.

� Part(e): Find EX We have

EX =

∫ ∞
0

xe−xdx = 1
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11.2. Independent Random Variables

• Discrete: We say discrete r.v. X,Y are independent if

P (X = x, Y = y) = P (X = x)P (Y = y) ,

for every x, y in the range of X and Y .
� This is the same as saying that X,Y ar independent if the joint pmf splits into the marginal
pmfs: pX,Y (x, y) = pX(x) · pY (y)

• Continuous: We say continuous r.v. X,Y are independent if

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

for any set A,B
� This equivalent: P (X ≤ a, Y ≤ b) = P (X ≤ a)P (Y ≤ b).
� Equivalent to FX,Y (x, y) = FX(x)FY (y).

• Random variables that are not independent, are said to be dependent.
• How can we check independence?

Theorem 16. Continuous (discrete) r.v. X,Y are independent if and only if their joint pdf (pmf) can
be expressed as

fX,Y (x, y) = fX(x)fY (y). (Continuous Case),

pX,Y (x, y) = pX(x)pY (y) (Discrete Case).

Proof. See textbook. �

• Example1: Let X,Y be r.v. with joint pdf

f(x, y) = 6e−2xe−3y 0 < x <∞, 0 < y <∞.
Are X,Y independent?
� Solution: Find the marginals fX and fY and see if f = fXfY . First

fX(x) =

∫ ∞
0

6e−2xe−3ydy = 2e−2x,

fY (y) =

∫ ∞
0

6e−2xe−3ydx = 3e−2y.

which are both exponential. Since f = fXfy then yes they are independent!
• Example2: Let X,Y have

fX,Y (x, y) = x+ y, 0 < x < 1, 0 < y < 1

Are X,Y independent?
� Solution: Note that there is no way to factor x + y = fX(x)fY (y), hence they can't be
independent.

• Example3: Let X,Y have

fX,Y (x, y) = 2, 0 < x < y < 1

• Are X,Y independent?
� Solution:

∗ We cannot use the previous argument to claim fX,Y can't split, because for example,
maybe hypothetically speaking 2 = 1 · 1 , so hypothetically it could split.

∗ So we must �nd the marginal pdfs and then check if fX,Y = fX · fY .
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∗ Important! But whenever the domain of f is not a rectangle, you MUST draw
the region of domain for fX,Y . And here the region is D = {(x, y) | 0 < x < y < 1}.
(Please try drawing this region on your own. If you struggle with this region, go to
https://www.wolframalpha.com/ and type in 0 < x < y < 1)

∗ Note that fX(x) =
∫ 1

x
2dy = 2 (1− x) for 0 < x < 1

∗ Then fY (y) =
∫ y

0
2dx = 2y for 0 < y < 1 .

∗ But fX,Y (x, y) = 2 6= fX(x)fY (y) = 2(1−x)2y!! Therefore X,Y are NOT independent.
• Example4: Suppose X,Y are independent uniformly distributed over (0, 1). Find P (Y < X).

� Solution: Since X,Y are independent then using the Theorem form this section we have

fX,Y (x, y) = fX(x)fY (y) = 1 · 1,
for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Draw region ('What do you think probability will be by
looking at the region?)

∗
∗ and get

P (Y < X) =

∫ 1

0

∫ x

0

f(x, y)dydx

=

∫ 1

0

∫ x

0

1dydx =

∫ 1

0

xdx

=
1

2
.
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11.3. Sums of independent Random Variables(?)

• Fact: If X,Y are independent, its not too hard to show that the cdf of Z = X + Y is

FX+Y (a) = P (X + Y ≤ a)

=

∫ ∫
{x+y≤a}

fX(x)fY (y)dxdy

=

∫ ∞
−∞

∫ a−y

−∞
fX(x)fY (y)dxdy

=

∫ ∞
−∞

∫ a−y

−∞
fX(x)dxfY (y)dy

=

∫ ∞
−∞

FX (a− y) fY (y)dy.

� By di�erentiating we have that

fX+Y (a) =

∫ ∞
−∞

fX (a− y) fY (y)dy.

• (?)Here are some interesting cases:
• Fact 1(Only thing I'll test you on): If Xi ∼ N

(
µi, σ

2
i

)
for 1 ≤ i ≤ n and are all independent

then Y = X1 + · · ·+Xn ∼ N
(
µ1 + · · ·µn, σ2

1 + · · ·+ σ2
n

)
.

� In particular ifX ∼ N
(
µx, σ

2
x

)
and Y ∼ N (µy, σ

2
y) are independent thenX+Y ∼ N

(
µx + µy, σ

2
x + σ2

y

)
and X − Y ∼ N

(
µx − µy, σ2

x + σ2
y

)
.

� In general aX ± bY ∼ N
(
aµx ± bµy, a2σ2

x + b2σ2
y

)
.

• Example1: Suppose T ∼ N (95, 25) and H ∼ N (65, 36) represents the grades of Tyler and Habib.
Asssume their grades are independent.
� Part(a): What is the probability that their average grades will be less than 90?
� Solution: T +H ∼ N (160, 61). Thus

P
(
T +H

2
≤ 90

)
= P (T +H ≤ 180)

= P
(
Z ≤ 180− 160√

61

)
= Φ

(
180− 160√

61

)
= Φ (2.56) = .9961

� Part (b): What is the probability that Habib will have scored higher than Tyler?
� Solution: Using H − T ∼ N (−30, 61) we compute

P (H > T ) = P (H − T > 0)

= 1− P (H − T < 0)

= 1− P
(
Z ≤ 0− (−30)√

61

)
= 1− Φ(3.84) = 1− 1 = 0.

• Other facts.
• Fact 2: Let Z ∼ N (0, 1) then Z2 ∼ χ2

1.
� If Z1, . . . , Zn are indepedent N (0, 1) then Y = Z2

1 + · · ·Z2
n ∼ χ2

n.



11.3. SUMS OF INDEPENDENT RANDOM VARIABLES(?) 81

• Fact 3: If X ∼ Poisson(λ) and Y ∼ Poisson(µ) , and they are independent, then X + Y ∼
Poisson(λ+ µ).

• List out stu� and then stop.
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11.4. Conditional Distributions- Discrete(?)

• The conditional pmf for a discrete R.V. is

pX|Y (x | y) = P (X = x | Y = y)

=
p(x, y)

pY (y)
.

• We also have the condition cdf: FX|Y (x | y) = P (X ≤ x | Y = u)
• Fact:

� If X,Y are indepedent then

pX|Y (x | y) = pX(x)

• Example1: Suppose the joint pmf of (X,Y ) is

�

x\y 0 1

0 .4 .2
1 .1 .3

� Compute some conditional pmf: Then the second column is

pX|Y (0 | 1) =
.2

.5
=

2

5
and pX|Y (1 | 1) =

.3

.5
=

3

5
.

� Are they independent? Note that pX(0) = .4 + .2 = .6 6= pX|Y (0 | 1), so no!
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11.5. Conditional Distributions- Continuous(?)

• Def: If X,Y are continuous with joint pdf f(x, y) then the conditional pdf of X given Y = y
is de�ned as

fX|Y (x | y) =
f(x, y)

fY (y)
.

� de�ned only when fY (y) > 0.
• Def: The conditional cdf of X given Y = y is

FX|Y (a | y) = P (X ≤ a | Y = y)

=

∫ a

−∞
fX|Y (x | y) dx.

• Fact: If X,Y are indepedent then

fX|Y (x | y) = fX(x).

• Example1: The joint pdf of X,Y is given by

fx(x, y) =

{
12
5 x (2− x− y) 0 < x < 1, 0 < y < 1

0 otherwise
.

Commpute the conditional pdf of X givne that Y = y where 0 < y < 1.
� Solution: We have

fX|Y (x | y) =
f(x, y)

fY (y)
=

x (2− x− y)∫ 1

0
x (2− x− y) dy

=
x (2− x− y)

2
3 −

y
2

.
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11.6. Joint PDF of functions

• Goal:
� Recall that from section 5.7 we can �nd the pdf of a new random variableY = g (X).
� Suppose we know the distributions of X1, X2 then what is the distribution of g1 (X1, X2) and
g2(X1, Y1)
∗ For example if we know X1, X2 what is the distribution of Y1 = X1 + X2 and Y2 =
X2

1 − eX1X2 .
• Steps to �nding the joint cdf of new R.V. made from old ones.:

� Suppose X1, X2 are jointly distributed with pdf fX1,X2 . Let g2 (x1, x2) , g2 (x2, x2) be multi-
variable functions.

� Goal: Find the joint pdf of Y1 = g1 (X1, X2) and Y2 = g1 (X2, X2)
� Step1: Find the Jacobian:

J (x1, x2) =

∣∣∣∣ ∇g1

∇g2

∣∣∣∣ =

∣∣∣∣∣ ∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣∣∣∣∣ =
∂g1

∂x1

∂g2

∂x2
− ∂g1

∂x2

∂g2

∂x1
6= 0.

at all points (x1, x2)
� Step2: Find the unique solutions of equationf y1 = g1 (x1, x2) and y2 = g2 (x1, x2) in terms
of

x1 = h1 (y1, y2) ,

x2 = h2 (y1, y2) .

� Step3: The joint pdf of Y1, Y2 is

fY1,Y2 (y1, y2) = fX1,X2 (x1, x2) |J (x1, x2)|−1

= fX1,X2
(h1 (y1, y2) , h2 (y1, y2)) |J (x1, x2)|−1

.

• Example1: Suppose X1, X2 have joint distribution

fX1,X2(x1, x2) =

{
2x1x2 0 ≤ x1, x2 ≤ 1

0 otherwise
.

Question:Find the joint pdf of Y1 = X1 +X2 and Y2 = X1 −X2.
� Step1: Find the Jacobian: Note that

y1 = g1 (x1, x2) = x1 + x2,

y2 = g2 (x1, x2) = x1 − x2.

So

J (x1, x2) =

∣∣∣∣ 1 1
1 −1

∣∣∣∣ = −2.

� Step2: Solve for x1, x2 and get

x1 =
1

2
(y1 + y2) ,

x2 =
1

2
(y1 − y2) .
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� Step3: The joint pdf of Y1, Y2 is given by the formula:

fY1,Y2 (y1, y2) = fX1,X2 (x1, x2) |J (x1, x2)|−1

= fX1,X2

(
1

2
(y1 + y2) ,

1

2
(y1 − y2)

)
1

|−2|

=


1
2 (y1 + y2) (y1 − y2) 0 ≤ 1

2 (y1 + y2) ≤ 1,

0 ≤ 1
2 (y1 − y2) ≤ 1

0 otherwise

• Example2: Suppose X1 ∼ N (0, 1) and X2 ∼ N (0, 4) and independent.
� Let Y1 = 2X1 +X2 and Y2 = X1 − 3X2.
� Question: Find the joint pdf fY1,Y2

(y1, y2) of Y1 and Y2.
� Step1: Find the Jacobian: Note that

y1 = g1 (x1, x2) = 2x1 + x2,

y2 = g2 (x1, x2) = x1 − 3x2.

So

J (x1, x2) =

∣∣∣∣ 2 1
1 −3

∣∣∣∣ = −7.

� Step2: Solve for x1, x2 and get

x1 =
3

7
y1 +

1

y
y2

x2 =
1

7
y1 −

2

7
y2

� Step3: The joint pdf of Y1, Y2 is given by the formula:

fY1,Y2
(y1, y2) = fX1,X2

(x1, x2) |J (x1, x2)|−1

= fX1,X2

(
3

7
y1 +

1

y
y2,

1

7
y1 −

2

7
y2

)
1

7
.

So we need to �nd the joint pdf of X1 and X2.
∗ But since X1 ∼ N (0, 1) and X2 ∼ N (0, 4) and indepedent Then

fX1
(x1) =

1√
2π
e−x

2/2 and fX2
(x2) =

1√
2 · 4π

e−x
2/(2·4).

Thus by inpedence

fX1,X2 (x1, x2) = fX1(x1)fX2(x2)

=
1√
2π
e−x

2/2 1√
2 · 4π

e−x
2/(2·4).

∗ Thus we have

fY1,Y2 (y1, y2) =
1√
2π
e−( 3

7y1+ 1
y y2)

2
/2 1√

8π
e−( 1

7y1−
2
7y2)

2
/8 1

7
.

• Example3(if time): Suppose X1, X2 have joint distribution

fX1,X2
(x1, x2) =

{
x1 + 3

2 (x2)
2

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

0 otherwise
.
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Question:Find the joint pdf of Y1 = X1 +X2 and Y2 = X2
1 .

� Step1: Find the Jacobian: Note that

y1 = g1 (x1, x2) = x1 + x2,

y2 = g2 (x1, x2) = x2
1.

So

J (x1, x2) =

∣∣∣∣ 1 2
2x1 0

∣∣∣∣ = −4x2

� Step2: Solve for x1, x2 and get

x1 =
√
y2,

x2 = y1 −
√
y2.

� Step3: The joint pdf of Y1, Y2 is given by the formula:

fY1,Y2
(y1, y2) = fX1,X2

(x1, x2) |J (x1, x2)|−1

= fX1,X2 (
√
y2, y1 −

√
y2)

1

|4x2|

=


1
|4x2|

[√
y2 + 3

2

(
y1 −

√
y2

)2]
0 ≤ √y2 ≤ 1,

0 ≤ y1 −
√
y2 ≤ 1

0 otherwise



CHAPTER 12

Expectations

12.1. Expectation of Sums of R.V.

Theorem 17. Let g : R2 → R. If X,Y have joint pmf p(x, y) then

E [g (X,Y )] =
∑
y

∑
x

g(x, y)p(x, y).

If X,Y have joint pdf f(x, y) then

E [g(X,Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dxdy.

• Example1: Suppose the joint p.m.f of X and Y is given by

X�Y 0 2

0 .2 .7
1 0 .1

. Find E [XY ].

� Solution: Using the formula we have with the function g(x, y) = xy:

E [XY ] =
∑
i,j

xiyjp(xi, yj)

= 0 · 0p(0, 0) + 1 · 0p(1, 0) + 0 · 2p(0, 2) + 1 · 2p(1, 2)

= 0 · 0 · .2 + 1 · 0 · 0 + 0 · 2 · .7 + 1 · 2 · .1
= .2

• Example2: Suppose X,Y are independent exponential r.v. with parameter λ = 1. Set up a double
integral that represents

E
[
X2Y

]
.

� Solution: Since X,Y are independent then

fX,Y (x, y) = e−1xe−1y = e−(x+y). 0 < x, y <∞.

� Then DRAW FIRST then

E
[
X2Y

]
=

∫ ∞
0

∫ ∞
0

x2ye−(x+y)dydx.

• Example3: Suppose the joint pdf of X,Y is

f(x, y) =

{
10xy2 0 < x < y, 0 < y < 1

0 otherwise
.

Find EXY and Var (Y ).
� Solution:

87
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� We First DRAW and then set up

EXY =

∫ 1

0

∫ y

0

xy
(
10xy2

)
dxdy = 10

∫ 1

0

∫ y

0

x2y3dxdy

=
10

3

∫ 1

0

y3y3dy =
10

3

1

7
=

10

21
.

� First note that Var (Y ) = EY 2 − (EY )
2
.

� Then

EY 2 =

∫ 1

0

∫ y

0

y2
(
10xy2

)
dxdy = 10

∫ 1

0

∫ y

0

y4xdxdy

= 5

∫ 1

0

y4y2dy =
5

7
.

and

EY =

∫ 1

0

∫ y

0

y
(
10xy2

)
dxdy = 10

∫ 1

0

∫ y

0

y3xdxdy

= 5

∫ 1

0

y3y2dy =
5

6
.

So that Var (Y ) = 5
7 −

(
5
6

)2
= 5

252 .

Theorem 18. (Properties of Expectation)
(a) E [X + Y ] = EX + EY
(b) If X ≤ Y then EX ≤ EY .

Proof. Part (a) was proved for the discrete case. So we only need to show the continuous case:

E [X + Y ] =

∫ ∫
(x+ y) f(x, y)dydx

=

∫ ∫
xf(x, y)dydx+

∫ ∫
yf(x, y)dydx

=

∫
xfX(x)dx+

∫
yfY (y)dy

= EX + EY.

�

• Example4: Let X1, . . . , Xn be independent and identically distributed random (i.i.d.) ran-
dom variables. Suppose EXi = µ. We call the quantity

X̄ =

n∑
i=1

Xi

n

the sample mean. Compute E
[
X̄
]
.
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� Solution: We use the properties of expectation

E
[
X̄
]

= E

[
n∑
i=1

Xi

n

]

=
1

n
E [X1 + · · ·+Xn]

=
1

n
(E [X1] + · · ·+ E [Xn])

=
1

n
(µ+ · · ·+ µ) =

nµ

n
= µ.

� In statistics, the sample mean is used to estimate the actual mean of a distribution.

Theorem 19. If X,Y are independent then

E [XY ] = (EX) (EY ) .

Proof. In the continuosuc case we have

E [XY ] =

∫ ∫
xyfX,Y (x, y)dydx

=

∫ ∫
xyfX(x)fY (y)dydx

=

(∫
xfX(x)dx

)(∫
yfY (y)dy

)
= (EX) (EY ) .

The discrete case is the same, except replace integrals with summations. �

• In general, the following is true:

Theorem 20. If X,Y are indepedent and g, h : R→ R then

E [g (X)h (Y )] = E [g (X)]E [h (Y )] .

• Mixed Discrete/Continuous Random Variables:

Theorem 21. Let g : R2 → R. Let X be a discrete random variable and Y be a continuous random
variable. If X has pmf pX(x),Y has joint pdf fY (y) , and X,Y are independent then

E [g (X,Y )] =

∞∑
i=1

∫ ∞
−∞

g(xi, y)pX(x)fY (y)dy,

provided the right handside exists.
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12.2. Covariance and Correlations.

• Note that EX and VarX give information about a single random variable.
• What statistic can give us information about how X e�ects Y , or vice versa?

Definition. The covariance between X and Y , is de�ned by

Cov (X,Y ) = E [(X − µX) (Y − µY )] .

• After some algebra one can show that

Cov (X,Y ) = E [XY ]− EXEY.
• The covariance between two random variables give us information about relationship between the
random variables.
� Covariance is a measure of how much two random variables change together.
� If the greater values of one variable mainly correspond with the greater values of the other
variable, and the same holds for the lesser values, i.e., the variables tend to show similar
behavior, the covariance is positive.
∗ Thus convariance measures if there is a linear relationship betwen X and Y .

� The sign of the covariance therefore shows the tendency in the linear relationship between
the variables.

� For example, the following plots shows a positive linear relationship between X and Y :

� In this case Cov (X,Y ) > 0.
• Note: If X,Y are independent then Cov (X,Y ) = 0. (This is not true in the other direction.
Meaning Cov (X,Y ) = 0 does not imply that X,Y are independent!)
� So Cov (X,Y ) = 0 means they are uncorrelated.

• Properties:
� (i) Cov (X,Y ) = Cov (Y,X)
� (ii) Cov (X,X) = Var (X)
� (iii) Cov (aX, Y ) = aCov (X,Y )

� (iv) Cov
(∑

iXi,
∑
j Yj

)
=
∑
i

∑
j Cov (Xi, Yj).

Theorem 22. (?) Formula for Sum of Variation:

Var (X + Y ) = Var (X) + Var (Y ) + 2Cov (X,Y ) .
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Gives us a formula for variation of X1, . . . , Xn:

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var (Xi) + 2
∑∑

i<j

Cov (Xi, Xj) .

• Fact: Note that if X,Y are independent then

Var (X + Y ) = Var(X) + Var (Y ) .

• Finally we have the following: Its standardized way to know how correlated two random variables
are:

Definition. The correlation coe�cient of two random variables X and Y , denoted by ρ(X,Y ) is
de�ned by

ρ (X,Y ) =
Cov (X,Y )√

Var (X)Var (Y )
.

• Fact:
� (1) −1 ≤ ρ(X,Y ) ≤ 1
� (2) If ρ(X,Y ) = 1 then Y = a+ bX where b =

σy
σx

> 0 (Straight positive sloped line)

� (3) If ρ(X,Y ) = −1 then Y = a+ bX where b = −σyσx < 0 (Straight negatively sloped line)

� (4) This ρ is a measure of linearity between Y and X.
∗ ρ > 0 positive linearity: Meaning that if you were to draw a line of best �t, then it
must be a positive sloped line
· The closer ρ gets to 1, the more (X,Y ) seems to be in a positive sloped straight
line

∗ ρ < 0 negative linearity: Meaning that if you were to draw a line of best �t, then it must
be a negative sloped line
· The closer ρ gets to −1, the more (X,Y ) seems to be in a negative sloped straight
line

� (5) If ρ (X,Y ) = 0, then X and Y are uncorrelated.
• Warning:

� ρ (X,Y ) does not pick up any other relationship, such as quadratic, or cubic
� ρ(X,Y ) is not the slope of the line of best �t. It is simply tell us if it's positive, or negative
relationship, and the strength of relationship.

• Example1:Suppose X,Y are random variables whose joint pdf is given by

f(x, y) =

{
1
y 0 < y < 1, 0 < x < y

0 otherwise
.

� Part (a): Find the covariance of X and Y .
� Part (b) Compute Var(X) and Var(Y ).
� Part (c) Calculate ρ(X,Y ).
� Solution:
� Part (a): Find the covariance of X and Y .
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� Recall that Cov (X,Y ) = EXY − EXEY . So

EXY =

∫ 1

0

∫ y

0

xy
1

y
dxdy =

∫ 1

0

y2

2
dy =

1

6

EX =

∫ 1

0

∫ y

0

x
1

y
dxdy =

∫ 1

0

y

2
dy =

1

4
.

EY =

∫ 1

0

∫ y

0

y
1

y
dxdy =

∫ 1

0

ydy =
1

2
.

Thus

Cov (X,Y ) = EXY − EXEY

=
1

6
− 1

4

1

2

=
1

24
.

� Part (b): Compute Var(X) and Var(Y ).
� We have that

EX2 =

∫ 1

0

∫ y

0

x2 1

y
dxdy =

∫ 1

0

y2

3
dy =

1

9
.

EY 2 =

∫ 1

0

∫ y

0

y2 1

y
dxdy =

∫ 1

0

y2dy =
1

3
.

� Thus recall that

Var (X) = EX2 − (EX)
2

=
1

9
−
(

1

4

)2

=
7

144

Also

Var (Y ) = EY 2 − (EY )
2

=
1

3
−
(

1

2

)2

=
1

12
.

� Part (c): Calculate ρ(X,Y ).
� We now use

ρ (X,Y ) =
Cov (X,Y )√

Var (X)Var (Y )

=
1
24√(

7
144

) (
1
12

) ≈ .6547.



CHAPTER 13

Moment generating functions

13.1. Moment Generating Functions

• For each random variable X, we can de�ne its moment generating function mX(t) by

mX(t) = E
[
etX
]

=

{∑
xi
etxip(xi) , if X is discrete∫∞

−∞ etxf(x)ds ,if X is continuous
.

• mX(t) is called the moment generating function (m.g.f.) because we can �nd all the moments of
X by di�erentiating m(t) and then evaluating at t = 0.

• Note that

m′(t) =
d

dt
E
[
etX
]

= E
[
d

dt
etX
]

= E
[
XetX

]
.

Now evaluate at t = 0 and get

m′(0) = E
[
Xe0·X] = E [X] .

• Similarly,

m′′(t) =
d

dt
E
[
XetX

]
= E

[
X2etX

]
so that

m′′(0) = E
[
X2e0

]
= E

[
X2
]
.

Theorem 23. For all n ≥ 0 we have

E [Xn] = m(n) (0) .

• Examples of Moment generating Functions
• Bernoulli: Recall that p(1) = p and p(0) = 1− p. Thus

mX(t) = EetX = et·0p(0) + et·1p(1)

= pet + (1− p).

93
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• Binomial: Recall that X ∼ Bin(n, p) if X =
∑n
i=0 Yi where Yi ∼ Bern(p) thus

mX(t) = EetX = EetX
∑n
i=0 Yi

= E
[(
etY1

)
· · ·
(
etYn

)]
= E

[
etY1

]
· · ·E

[
etYn

]
, by independence

=
(
pet + (1− p)

)n
• Poisson: If X ∼ Poisson(λ) then

mX(t) = EetX =

∞∑
n=0

etne−λ
λn

n!

= e−λ
∞∑
n=0

etn
λn

n!

= e−λ
∞∑
n=0

(etλ)
n

n!

now recall from Calculus 2 that ex =
∑∞
n=0

xn

n! so that

mX(t) = e−λ
∞∑
n=0

xn

n!
, with x = etλ

= e−λee
tλ

= ee
tλ−λ

= exp
(
λ
(
et − 1

))
• Exponential: If X ∼ exp(λ) then

mX(t) = EetX

=

∫ ∞
0

etxλe−λxdx

=
λ

λ− t
,

which is valied whenever t > λ.
• Standard Normal: If X ∼ N (0, 1) then

mX(t) = EetX =
1√
2π

∫ ∞
−∞

etxe−x
2/2dx

= et
2/2.

How did we obtain that 1√
2π

∫∞
−∞ etxe−x

2/2dx = et
2/2? The trick is to use 1 = et

2/2e−t
2/2, hence

1√
2π

∫ ∞
−∞

etxe−x
2/2dx = et

2/2 1√
2π

∫ ∞
−∞

e−t
2/2etxe−x

2/2dx

= et
2/2 1√

2π

∫ ∞
−∞

e−(t−x)2/2dx

= et
2/2 · 1,
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and use the fact that since the function f(x) = 1√
2π
e−(t−x)2/2 is the pdf of a normal random

variable with mean t and variance 1, then
∫∞
−∞ f(x)dx = 1.

• Normal: If X ∼ N (µ, σ2) then X = µ+ σZ so that

mX(t) = EetX

= EetµetσZ = etµEe(tσ)Z

= etµmX (tσ) = etµe(tσ)2/2

= exp

(
tµ+

t2σ2

2

)
.

• Property: Suppose X,Y are independent then what is that m.g.f. of X + Y ?
� Let's try to �gure out:

mX+Y (t) = Eet(X+Y ) = E
(
etXetY

)
= E

(
etX
)
E
(
etY
)
, by independence

= mX(t)mY (t).

� Thus we know that

mX+Y (t) = mX(t)mY (t).

• Note: Note that if fX(x) is the pdf of a r.v. then it's m.g.f is

EetX =

∫
etxfX(x)dx.

This is similar to the laplace transform of fX(x). [L [f ] (s) =
∫
e−sxfX(x)dx].

� Recall that there is one to one correspondence of laplace transforms that completely determines
a function.

Theorem 24. If mX(t) = mY (t) <∞ for all t in an interval, then X and Y have the same distribution.
That is, m.g.fs completely determines the distribution.

• Example1: Suppose that m.g.f of X is given by m(t) = e3(et−1). Find P (X = 0).
� Solution: (We want to work backwords). Match this m.g.f to a known m.g.f in our table.
Looks like

m(t) = e3(et−1) = eλ(et−1) where λ = 3.

Thus X ∼ Poisson(3). Thus

P (X = 0) = e−λ
λ0

0!
= e−3.

• Summary:
(1) m(t) = EetX . We have a table of mgf of distributions:
(2) The m.g.f helps us �nd moments: E [Xn] = m(n) (0)
(3) If X,Y are independent then mX+Y (t) = mX(t)mY (t).
(4) The m.g.f. helps us determine the distribution of random variables. If mX(t) = mY (t) then

X and Y have the same distribution.
• Recall we had a section on sums of independent random variables.
• Example2: Recall X ∼ N

(
µx, σ

2
x

)
and Y ∼ N (µy, σ

2
y), independent. Then what is

X + Y ∼ N (?, ?)
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� Sol: Note that

mX+Y (t) = mX(t)mY (t)

= exp

(
tµx +

t2σ2
x

2

)
exp

(
tµy +

t2σ2
y

2

)

= exp

(
t (µx + µy) +

t2
(
σ2
x + σ2

y

)
2

)
.

So then you look at our table and check which distribution has this mg.f. with µ = µx + µy
and σ2 = σ2

x + σ2
y. so that X + Y ∼ N

(
µx + µy, σ

2
x + σ2

y

)
• Example3: Suppose X ∼ bin(n, p) and Y ∼ bin(m, p) , independent, then what is the distribution
of X + Y ?
� Solution: We use

mX+Y (t) = mX(t)mY (t)

=
(
pet + (1− p)

)n (
pet + (1− p)

)m
=

(
pet + (1− p)

)n+m
.

Look at the table and see what distribution has this m.g.f. Thus

X + Y ∼ bin(n+m, p).

• Example4: Suppose X is a discrete random variable and has the m.g.f.

mX(t) =
1

7
e2t +

3

7
e3t +

2

7
e5t +

1

7
e8t.

Question: What is the p.m.f of X? Find EX.
� Solution(a): This doesn't match any of the known mg.f.s. Thus we can read o� from the
mgf that since

1

7
e2t +

3

7
e3t +

2

7
e5t +

1

7
e8t =

4∑
i=1

etxip(xi)

then p(2) = 1
7 , p(3) = 3

7 , p(5) = 2
7 and p(8) = 1

7 .
� Solution(b): First

m′(t) =
2

7
e2t +

9

7
e3t +

10

7
e5t +

8

7
e8t,

so that

E [X] = m′(0) =
2

7
+

9

7
+

10

7
+

8

7
=

29

7
.

• Example5: Suppose X has m.g.f

mX(t) = (1− 2t)
− 1

2 for t <
1

2
.

Find the �rst and second moments of X.
� Solution: We have

m′X(t) = −1

2
(1− 2t)

− 3
2 (−2) = (1− 2t)

− 3
2 ,

m′′X(t) = −3

2
(1− 2t)

− 5
2 (−2) = 3 (1− 2t)

− 5
2 .
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So that

EX = m′X(0) = (1− 2 · 0)
− 3

2 = 1,

EX2 = m′′X(0) = 3 (1− 2 · 0)
− 5

2 = 3.



CHAPTER 14

Limit Laws

14.1. The Central Limit Theorem

• The CLT is one of the most remarkable theorems in Probability.
� It helps us understand why the emperical frequencies of so many natural populations exihibit
bell-shaped (normal) curves.

• Recall that i.i.d. means independent and identically distributed random variables.

Theorem 25. (CLT) Let X1, X2, X3 . . . be i.i.d. each with mean µ and variance σ2. Then the distri-
bution of

X1 + · · ·+Xn − nµ
σ
√
n

tends to the standard normal Z as n→∞. This means

lim
n→∞

P
(
X1 + · · ·+Xn − nµ

σ
√
n

≤ b
)

= P (Z ≤ b) .

• How we use CLT: That is,

P
(
X1 + · · ·+Xn − nµ

σ
√
n

≤ b
)
≈ P (Z ≤ b) = Φ(b).

when n is large.
• The CLT helps us approximate the probability of anything involving X1 + · · ·+Xn where Xi are
independent and identically distributed.

• When approximating discrete distributions: USE the ±.5 continuity correction:
• Example1: If 10 fair dice are rolled, �nd the approximate probability that the sum obtained is
between 30 and 40, inclusive.
� Solution: Let Xi denote the value of the ith die. Recall that

E (Xi) =
7

2
Var(Xi) =

35

12
.

Take

X = X1 + · · ·+X10

to be their sum.
� Using the CLT we need with n = 10,

nµ = 10 · 7

2
= 35

σ
√
n =

√
350

12

98
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thus using the continuity correction, then

P (29.5 ≤ X ≤ 40.5) = P

29.5− 35√
350
12

≤ X − 35√
350
12

≤ 40.5− 35√
350
12


≈ P (−1.0184 ≤ Z ≤ 1.0184)

= Φ (1.0184)− Φ (−1.0184)

= 2Φ (1.0184)− 1 = .692.

• Example2: An instructor has 1000 exams that will be graded in sequence.
� The times required to grade exam exam are i.i.d. with µ = 20 minutes and σ = 4 minutes.
� Approximate prob that the intructor will grade at least 25 exams in the �rst 450 minutes of
work.

� Solution:
� Let Xi be the time it takes to grade exam i. Then

X = X1 + · · ·+X25

is the time it takes to grade the �rst 25 exams. We want P (X ≤ 450).
� Use CLT,

nµ = 25 · 20 = 500

σ
√
n = 4

√
25 = 20.

� Thus

P (X ≤ 450) = P
(
X − 500

20
≤ 450− 500

20

)
≈ P (Z ≤ −2.5)

= 1− Φ(2.5)

= .006.


